remove attn_temperature_tuning in default user guide (#49)
Signed-off-by: Lu Fang <fanglu@fb.com>
This commit is contained in:
parent
3eb4d4d737
commit
e4a43dab00
|
@ -35,7 +35,7 @@ VLLM_DISABLE_COMPILE_CACHE=1 vllm serve meta-llama/Llama-4-Scout-17B-16E-Instruc
|
|||
```
|
||||
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 \
|
||||
--tensor-parallel-size 8 \
|
||||
--max-model-len 430000 --override-generation-config='{"attn_temperature_tuning": true}'
|
||||
--max-model-len 430000'
|
||||
```
|
||||
|
||||
On 8x H200 GPUs:
|
||||
|
@ -45,7 +45,7 @@ On 8x H200 GPUs:
|
|||
```
|
||||
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve meta-llama/Llama-4-Scout-17B-16E-Instruct \
|
||||
--tensor-parallel-size 8 \
|
||||
--max-model-len 3600000 --override-generation-config='{"attn_temperature_tuning": true}'
|
||||
--max-model-len 3600000'
|
||||
```
|
||||
|
||||
* Maverick (up to 1M context):
|
||||
|
@ -53,11 +53,9 @@ VLLM_DISABLE_COMPILE_CACHE=1 vllm serve meta-llama/Llama-4-Scout-17B-16E-Instruc
|
|||
```
|
||||
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 \
|
||||
--tensor-parallel-size 8
|
||||
--max-model-len 1000000 --override-generation-config='{"attn_temperature_tuning": true}'
|
||||
--max-model-len 1000000'
|
||||
```
|
||||
|
||||
Note: we highly recommend to turn on attn_temperature_tuning to improve accuracy for long contexts longer than 32K tokens, and VLLM_DISABLE_COMPILE_CACHE=1 is required.
|
||||
|
||||
**Multimodality:**
|
||||
|
||||
The Llama 4 models excel at image understanding up to 8-10 images. By default, vLLM server accepts 1 image per request. Please pass `--limit-mm-per-prompt image=10` to serve up to 10 images per request with OpenAI-compatible API. We also recommend checking out our multi-image offline inference example with Llama-4 [here](https://github.com/vllm-project/vllm/blob/v0.8.3/examples/offline_inference/vision_language_multi_image.py).
|
||||
|
@ -74,6 +72,7 @@ While more performance enhancements are on the way, we believe the Llama 4 model
|
|||
|
||||
* **Boost Performance & Context Length:** Set `--kv-cache-dtype fp8` to potentially double the usable context window and gain a performance boost. We observe little to no accuracy drop in relevant evaluations with this setting.
|
||||
* **Maximize Context Window (up to 10M):** To fully utilize the maximum context windows (up to 10M for Scout), we recommend serving across multiple nodes using tensor parallelism or pipeline parallelism. Follow our distributed inference guide [here](https://docs.vllm.ai/en/latest/serving/distributed_serving.html).
|
||||
* **Improve Long Context Accuracy (\>32K):** We highly recommend adding `--override-generation-config='{"attn_temperature_tuning": true}'` to improve accuracy for contexts longer than 32K tokens.
|
||||
|
||||
**Other Hardware Support & Quantizations:**
|
||||
|
||||
|
@ -108,4 +107,3 @@ We extend our sincere thanks to the Meta team for their implementation of the mo
|
|||
We also thank the AMD team for their support in enabling these models on MI300X: [Hongxia Yang](https://github.com/hongxiayang) and Weijun Jiang.
|
||||
|
||||
The vLLM team’s performance benchmarks were run on hardware generously provided by Nebius and NVIDIA.
|
||||
|
||||
|
|
Loading…
Reference in New Issue