Export NaNs in logits to scheduler_stats if output is corrupted (#18777)

Signed-off-by: Vlad Mihailescu <vtmihailescu@gmail.com>
This commit is contained in:
Vlad Tiberiu Mihailescu 2025-06-20 07:47:16 -07:00 committed by GitHub
parent 7e8977fcd4
commit 2e3e3c86dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 104 additions and 2 deletions

View File

@ -4,6 +4,7 @@
import random
import pytest
import torch
from vllm.attention import Attention
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
@ -277,6 +278,54 @@ def test_update_states_request_resumed(model_runner):
assert _is_req_state_block_table_match(model_runner, req_id)
def test_get_nans_in_logits(model_runner):
req_ids = ("req_0", "req_1")
scheduler_output = _schedule_new_request(*req_ids)
model_runner._update_states(scheduler_output)
logits = torch.tensor([
[1.0, 2.0, 3.0],
[3.0, 2.0, 1.0],
], device=DEVICE)
result = model_runner._get_nans_in_logits(logits)
assert result == {"req_0": 0, "req_1": 0}
logits = torch.tensor([
[1.0, float('nan'), 3.0],
[4.0, float('nan'), float('nan')],
],
device=DEVICE)
result = model_runner._get_nans_in_logits(logits)
assert result == {"req_0": 1, "req_1": 2}
logits = torch.tensor([
[1.0, 2.0, 3.0],
[4.0, float('nan'), float('nan')],
],
device=DEVICE)
result = model_runner._get_nans_in_logits(logits)
assert result == {"req_0": 0, "req_1": 2}
result = model_runner._get_nans_in_logits(logits=None)
assert result == {"req_0": 0, "req_1": 0}
logits = torch.tensor([
[1.0, float('nan'), 3.0],
], device=DEVICE)
result = model_runner._get_nans_in_logits(logits)
assert result == {'req_0': 1, 'req_1': 0}
logits = torch.tensor([
[float('nan'), float('nan'), 2.0],
[1.0, 2.0, 3.0],
[float('nan'), 2.0, 3.0],
],
device=DEVICE)
result = model_runner._get_nans_in_logits(logits)
assert result == {'req_0': 2, 'req_1': 0}
def test_update_states_no_changes(model_runner):
req_id = "req_0"

View File

@ -130,6 +130,7 @@ if TYPE_CHECKING:
VLLM_SLEEP_WHEN_IDLE: bool = False
VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
VLLM_KV_CACHE_LAYOUT: Optional[str] = None
VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
def get_default_cache_root():
@ -897,7 +898,13 @@ environment_variables: dict[str, Callable[[], Any]] = {
# leave the layout choice to the backend. Mind that backends may only
# implement and support a subset of all possible layouts.
"VLLM_KV_CACHE_LAYOUT":
lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None)
lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None),
# Enable checking whether the generated logits contain NaNs,
# indicating corrupted output. Useful for debugging low level bugs
# or bad hardware but it may add compute overhead.
"VLLM_COMPUTE_NANS_IN_LOGITS":
lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))),
}
# --8<-- [end:env-vars-definition]

View File

@ -717,6 +717,7 @@ class Scheduler(SchedulerInterface):
prompt_logprobs_dict = model_runner_output.prompt_logprobs_dict
num_scheduled_tokens = scheduler_output.num_scheduled_tokens
pooler_outputs = model_runner_output.pooler_output
num_nans_in_logits = model_runner_output.num_nans_in_logits
new_running: list[Request] = []
outputs: dict[int, list[EngineCoreOutput]] = defaultdict(list)
@ -810,6 +811,10 @@ class Scheduler(SchedulerInterface):
request.structured_output_request.grammar.accept_tokens( # type: ignore[union-attr]
req_id, new_token_ids)
# spec_token_ids comes from the model runner output
if num_nans_in_logits is not None and req_id in num_nans_in_logits:
request.num_nans_in_logits = num_nans_in_logits[req_id]
# Add newly generated spec token ids to the request.
if spec_token_ids is not None:
if self.structured_output_manager.should_advance(request):
@ -972,6 +977,8 @@ class Scheduler(SchedulerInterface):
kv_cache_usage=self.kv_cache_manager.usage,
prefix_cache_stats=prefix_cache_stats,
spec_decoding_stats=spec_decoding_stats,
num_corrupted_reqs=sum(req.is_output_corrupted
for req in self.running),
)
def make_spec_decoding_stats(

View File

@ -40,6 +40,8 @@ class SchedulerStats:
spec_decoding_stats: Optional[SpecDecodingStats] = None
num_corrupted_reqs: int = 0
@dataclass
class LoRAStats:

View File

@ -108,6 +108,9 @@ class ModelRunnerOutput:
finished_sending: Optional[set[str]] = None
finished_recving: Optional[set[str]] = None
# req_id -> num_nans_in_logits
num_nans_in_logits: Optional[dict[str, int]] = None
EMPTY_MODEL_RUNNER_OUTPUT = ModelRunnerOutput(req_ids=[],
req_id_to_index={},
@ -117,4 +120,5 @@ EMPTY_MODEL_RUNNER_OUTPUT = ModelRunnerOutput(req_ids=[],
prompt_logprobs_dict={},
pooler_output=[],
finished_sending=None,
finished_recving=None)
finished_recving=None,
num_nans_in_logits=None)

View File

@ -97,6 +97,10 @@ class Request:
# The number of tokens with prefix cache hits.
self.num_cached_tokens = -1
# The number of NaNs in logits. A value greater than 0
# indicates that the output is corrupted
self.num_nans_in_logits = 0
@classmethod
def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request":
if request.mm_inputs is not None:
@ -132,6 +136,10 @@ class Request:
self._output_token_ids.extend(token_ids)
self._all_token_ids.extend(token_ids)
@property
def is_output_corrupted(self) -> bool:
return self.num_nans_in_logits > 0
@property
def num_tokens(self) -> int:
return len(self._all_token_ids)

View File

@ -1431,6 +1431,10 @@ class GPUModelRunner(LoRAModelRunnerMixin):
)
sampler_output.sampled_token_ids = output_token_ids
num_nans_in_logits = {}
if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
num_nans_in_logits = self._get_nans_in_logits(logits)
# TODO(woosuk): The following loop can be slow since it iterates over
# the requests one by one. Optimize.
discard_sampled_tokens_req_indices = []
@ -1601,6 +1605,7 @@ class GPUModelRunner(LoRAModelRunnerMixin):
pooler_output=[],
finished_sending=finished_sending,
finished_recving=finished_recving,
num_nans_in_logits=num_nans_in_logits,
)
def kv_connector_no_forward(
@ -1826,6 +1831,26 @@ class GPUModelRunner(LoRAModelRunnerMixin):
return prompt_logprobs_dict
def _get_nans_in_logits(
self,
logits: Optional[torch.Tensor],
) -> dict[str, int]:
try:
if logits is None:
return {req_id: 0 for req_id in self.input_batch.req_ids}
num_nans_in_logits = {}
num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
for req_id in self.input_batch.req_ids:
req_index = self.input_batch.req_id_to_index[req_id]
num_nans_in_logits[req_id] = (
int(num_nans_for_index[req_index])
if num_nans_for_index is not None
and req_index < logits.shape[0] else 0)
return num_nans_in_logits
except IndexError:
return {}
@contextmanager
def maybe_randomize_inputs(self, input_ids: torch.Tensor):
"""