mirror of https://github.com/vllm-project/vllm.git
[Frontend] add run batch to CLI (#18804)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
4c2b38ce9e
commit
435fa95444
|
@ -48,7 +48,19 @@ The batch running tool is designed to be used from the command line.
|
|||
You can run the batch with the following command, which will write its results to a file called `results.jsonl`
|
||||
|
||||
```console
|
||||
python -m vllm.entrypoints.openai.run_batch -i offline_inference/openai_batch/openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
python -m vllm.entrypoints.openai.run_batch \
|
||||
-i offline_inference/openai_batch/openai_example_batch.jsonl \
|
||||
-o results.jsonl \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
or use command-line:
|
||||
|
||||
```console
|
||||
vllm run-batch \
|
||||
-i offline_inference/openai_batch/openai_example_batch.jsonl \
|
||||
-o results.jsonl \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
### Step 3: Check your results
|
||||
|
@ -68,7 +80,19 @@ The batch runner supports remote input and output urls that are accessible via h
|
|||
For example, to run against our example input file located at `https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl`, you can run
|
||||
|
||||
```console
|
||||
python -m vllm.entrypoints.openai.run_batch -i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
python -m vllm.entrypoints.openai.run_batch \
|
||||
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
|
||||
-o results.jsonl \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
or use command-line:
|
||||
|
||||
```console
|
||||
vllm run-batch \
|
||||
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
|
||||
-o results.jsonl \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
## Example 3: Integrating with AWS S3
|
||||
|
@ -164,6 +188,15 @@ python -m vllm.entrypoints.openai.run_batch \
|
|||
--model --model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
or use command-line:
|
||||
|
||||
```console
|
||||
vllm run-batch \
|
||||
-i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
|
||||
-o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
|
||||
--model --model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
### Step 4: View your results
|
||||
|
||||
Your results are now on S3. You can view them in your terminal by running
|
||||
|
|
|
@ -2,7 +2,6 @@
|
|||
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
from vllm.entrypoints.openai.protocol import BatchRequestOutput
|
||||
|
@ -35,9 +34,8 @@ def test_empty_file():
|
|||
input_file.write("")
|
||||
input_file.flush()
|
||||
proc = subprocess.Popen([
|
||||
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
|
||||
input_file.name, "-o", output_file.name, "--model",
|
||||
"intfloat/multilingual-e5-small"
|
||||
"vllm", "run-batch", "-i", input_file.name, "-o", output_file.name,
|
||||
"--model", "intfloat/multilingual-e5-small"
|
||||
], )
|
||||
proc.communicate()
|
||||
proc.wait()
|
||||
|
@ -54,9 +52,8 @@ def test_completions():
|
|||
input_file.write(INPUT_BATCH)
|
||||
input_file.flush()
|
||||
proc = subprocess.Popen([
|
||||
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
|
||||
input_file.name, "-o", output_file.name, "--model",
|
||||
"NousResearch/Meta-Llama-3-8B-Instruct"
|
||||
"vllm", "run-batch", "-i", input_file.name, "-o", output_file.name,
|
||||
"--model", "NousResearch/Meta-Llama-3-8B-Instruct"
|
||||
], )
|
||||
proc.communicate()
|
||||
proc.wait()
|
||||
|
@ -79,9 +76,8 @@ def test_completions_invalid_input():
|
|||
input_file.write(INVALID_INPUT_BATCH)
|
||||
input_file.flush()
|
||||
proc = subprocess.Popen([
|
||||
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
|
||||
input_file.name, "-o", output_file.name, "--model",
|
||||
"NousResearch/Meta-Llama-3-8B-Instruct"
|
||||
"vllm", "run-batch", "-i", input_file.name, "-o", output_file.name,
|
||||
"--model", "NousResearch/Meta-Llama-3-8B-Instruct"
|
||||
], )
|
||||
proc.communicate()
|
||||
proc.wait()
|
||||
|
@ -95,9 +91,8 @@ def test_embeddings():
|
|||
input_file.write(INPUT_EMBEDDING_BATCH)
|
||||
input_file.flush()
|
||||
proc = subprocess.Popen([
|
||||
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
|
||||
input_file.name, "-o", output_file.name, "--model",
|
||||
"intfloat/multilingual-e5-small"
|
||||
"vllm", "run-batch", "-i", input_file.name, "-o", output_file.name,
|
||||
"--model", "intfloat/multilingual-e5-small"
|
||||
], )
|
||||
proc.communicate()
|
||||
proc.wait()
|
||||
|
@ -117,9 +112,8 @@ def test_score():
|
|||
input_file.write(INPUT_SCORE_BATCH)
|
||||
input_file.flush()
|
||||
proc = subprocess.Popen([
|
||||
sys.executable,
|
||||
"-m",
|
||||
"vllm.entrypoints.openai.run_batch",
|
||||
"vllm",
|
||||
"run-batch",
|
||||
"-i",
|
||||
input_file.name,
|
||||
"-o",
|
||||
|
|
|
@ -7,6 +7,7 @@ import sys
|
|||
import vllm.entrypoints.cli.benchmark.main
|
||||
import vllm.entrypoints.cli.collect_env
|
||||
import vllm.entrypoints.cli.openai
|
||||
import vllm.entrypoints.cli.run_batch
|
||||
import vllm.entrypoints.cli.serve
|
||||
import vllm.version
|
||||
from vllm.entrypoints.utils import VLLM_SERVE_PARSER_EPILOG, cli_env_setup
|
||||
|
@ -17,6 +18,7 @@ CMD_MODULES = [
|
|||
vllm.entrypoints.cli.serve,
|
||||
vllm.entrypoints.cli.benchmark.main,
|
||||
vllm.entrypoints.cli.collect_env,
|
||||
vllm.entrypoints.cli.run_batch,
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
|
||||
from prometheus_client import start_http_server
|
||||
|
||||
from vllm.entrypoints.cli.types import CLISubcommand
|
||||
from vllm.entrypoints.logger import logger
|
||||
from vllm.entrypoints.openai.run_batch import main as run_batch_main
|
||||
from vllm.entrypoints.openai.run_batch import make_arg_parser
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.version import __version__ as VLLM_VERSION
|
||||
|
||||
|
||||
class RunBatchSubcommand(CLISubcommand):
|
||||
"""The `run-batch` subcommand for vLLM CLI."""
|
||||
|
||||
def __init__(self):
|
||||
self.name = "run-batch"
|
||||
super().__init__()
|
||||
|
||||
@staticmethod
|
||||
def cmd(args: argparse.Namespace) -> None:
|
||||
logger.info("vLLM batch processing API version %s", VLLM_VERSION)
|
||||
logger.info("args: %s", args)
|
||||
|
||||
# Start the Prometheus metrics server.
|
||||
# LLMEngine uses the Prometheus client
|
||||
# to publish metrics at the /metrics endpoint.
|
||||
if args.enable_metrics:
|
||||
logger.info("Prometheus metrics enabled")
|
||||
start_http_server(port=args.port, addr=args.url)
|
||||
else:
|
||||
logger.info("Prometheus metrics disabled")
|
||||
|
||||
asyncio.run(run_batch_main(args))
|
||||
|
||||
def subparser_init(
|
||||
self,
|
||||
subparsers: argparse._SubParsersAction) -> FlexibleArgumentParser:
|
||||
run_batch_parser = subparsers.add_parser(
|
||||
"run-batch",
|
||||
help="Run batch prompts and write results to file.",
|
||||
description=(
|
||||
"Run batch prompts using vLLM's OpenAI-compatible API.\n"
|
||||
"Supports local or HTTP input/output files."),
|
||||
usage=
|
||||
"vllm run-batch -i INPUT.jsonl -o OUTPUT.jsonl --model <model>",
|
||||
)
|
||||
return make_arg_parser(run_batch_parser)
|
||||
|
||||
|
||||
def cmd_init() -> list[CLISubcommand]:
|
||||
return [RunBatchSubcommand()]
|
|
@ -33,9 +33,7 @@ from vllm.utils import FlexibleArgumentParser, random_uuid
|
|||
from vllm.version import __version__ as VLLM_VERSION
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible batch runner.")
|
||||
def make_arg_parser(parser: FlexibleArgumentParser):
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--input-file",
|
||||
|
@ -98,7 +96,13 @@ def parse_args():
|
|||
default=False,
|
||||
help="If set to True, enable prompt_tokens_details in usage.")
|
||||
|
||||
return parser.parse_args()
|
||||
return parser
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible batch runner.")
|
||||
return make_arg_parser(parser).parse_args()
|
||||
|
||||
|
||||
# explicitly use pure text format, with a newline at the end
|
||||
|
|
Loading…
Reference in New Issue