Since #4335 was merged, I've noticed that the definition of ServerRunner in the tests is the same as in the test for OpenAI API. I have moved the class to the test utilities to avoid code duplication. (Although it only has been repeated twice so far, I will add another similar test suite in #4200 which would duplicate the code a third time)
Also, I have moved the test utilities file (test_utils.py) to under the test directory (tests/utils.py), since none of its code is actually used in the main package. Note that I have added __init__.py to each test subpackage and updated the ray.init() call in the test utilities file in order to relative import tests/utils.py.
Provide an initial support to FP8 computation. This PR is inspired by HuggingFace TGI: huggingface/text-generation-inference#1726
This feature can be enabled with --quantization fp8 or -q fp8 when launching an engine.
Algorithm:
We still load a model checkpoint in FP16/BF16. After the weights are loaded, Fp8LinearMethod calculates the per-tensor scaling factor of weights and quantizes the weights accordingly. The scaling factor will then be stored for future use. Meanwhile, the per-tensor scaling factor for activations is calculated in every forward pass.
Initial Results:
Currently tested Mistral-7B on 1xH100. With prompt length ~5 and decoding length 128:
BF16: 1.47s
FP8: 1.66s
I'll try to use larger models and try to find more performance bottleneck. Meanwhile, you're welcome to try this code.