# vLLM CLI Guide
The vllm command-line tool is used to run and manage vLLM models. You can start by viewing the help message with:
```
vllm --help
```
Available Commands:
```
vllm {chat,complete,serve,bench,collect-env,run-batch}
```
## serve
Start the vLLM OpenAI Compatible API server.
??? Examples
```bash
# Start with a model
vllm serve meta-llama/Llama-2-7b-hf
# Specify the port
vllm serve meta-llama/Llama-2-7b-hf --port 8100
# Check with --help for more options
# To list all groups
vllm serve --help=listgroup
# To view a argument group
vllm serve --help=ModelConfig
# To view a single argument
vllm serve --help=max-num-seqs
# To search by keyword
vllm serve --help=max
```
## chat
Generate chat completions via the running API server.
```bash
# Directly connect to localhost API without arguments
vllm chat
# Specify API url
vllm chat --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick chat with a single prompt
vllm chat --quick "hi"
```
## complete
Generate text completions based on the given prompt via the running API server.
```bash
# Directly connect to localhost API without arguments
vllm complete
# Specify API url
vllm complete --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick complete with a single prompt
vllm complete --quick "The future of AI is"
```
## bench
Run benchmark tests for latency online serving throughput and offline inference throughput.
To use benchmark commands, please install with extra dependencies using `pip install vllm[bench]`.
Available Commands:
```bash
vllm bench {latency, serve, throughput}
```
### latency
Benchmark the latency of a single batch of requests.
```bash
vllm bench latency \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
```
### serve
Benchmark the online serving throughput.
```bash
vllm bench serve \
--model meta-llama/Llama-3.2-1B-Instruct \
--host server-host \
--port server-port \
--random-input-len 32 \
--random-output-len 4 \
--num-prompts 5
```
### throughput
Benchmark offline inference throughput.
```bash
vllm bench throughput \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
```
## collect-env
Start collecting environment information.
```bash
vllm collect-env
```
## run-batch
Run batch prompts and write results to file.
Examples
```bash
# Running with a local file
vllm run-batch \
-i offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
# Using remote file
vllm run-batch \
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
```
## More Help
For detailed options of any subcommand, use:
```bash
vllm --help
```