# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch import vllm.envs as envs from vllm._custom_ops import scaled_fp8_quant from vllm.compilation.activation_quant_fusion import ActivationQuantFusionPass from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe from vllm.config import CompilationConfig, PassConfig, VllmConfig from vllm.model_executor.layers.activation import SiluAndMul from .backend import TestBackend class TestModel(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.silu_and_mul = SiluAndMul() self.scale = torch.rand(1, dtype=torch.float32) def forward(self, x): y = self.silu_and_mul(x) x2 = scaled_fp8_quant(y, self.scale) return x2 @pytest.mark.parametrize("num_tokens", [256]) @pytest.mark.parametrize("hidden_size", [64]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"], reason="Only test on CUDA and ROCm") def test_fusion_silu_and_mul_quant(num_tokens, hidden_size): torch.set_default_device("cuda") torch.set_default_dtype(torch.float16) # Reshape pass is needed for the fusion pass to work config = VllmConfig() config.compilation_config = CompilationConfig( pass_config=PassConfig(enable_fusion=True, enable_noop=True)) fusion_pass = ActivationQuantFusionPass(config) backend = TestBackend(fusion_pass) model = TestModel() # First dimension dynamic x = torch.rand(num_tokens, hidden_size) torch._dynamo.mark_dynamic(x, 0) result = model(x) model2 = torch.compile(model, backend=backend) result2 = model2(x) # Check that it gives the same answer torch.testing.assert_close(result[0].to(dtype=torch.float16), result2[0].to(dtype=torch.float16), atol=1e-3, rtol=1e-3) # Check substitution worked pre_nodes = backend.graph_pre_pass.nodes post_nodes = backend.graph_post_pass.nodes silu_and_mul_quant = torch.ops._C.silu_and_mul_quant.default fp8_quant = torch.ops._C.static_scaled_fp8_quant.default # In pre-nodes, fp8 quant should be present and fused kernels should not assert find_auto_fn_maybe(pre_nodes, silu_and_mul_quant) is None find_auto_fn(pre_nodes, fp8_quant) # In post-nodes, fused kernels should be present and fp8 quant should not find_auto_fn(post_nodes, silu_and_mul_quant) assert find_auto_fn_maybe(post_nodes, fp8_quant) is None