# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Tests for the MOE layers. Run `pytest tests/kernels/test_moe.py`. """ import functools from typing import Callable, Optional, Union import pytest import torch from torch.nn import Parameter from torch.nn import functional as F from transformers import MixtralConfig from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock import vllm.model_executor.layers.fused_moe # noqa from tests.kernels.utils import opcheck, stack_and_dev, torch_moe from vllm.config import VllmConfig, set_current_vllm_config from vllm.distributed.parallel_state import init_distributed_environment from vllm.forward_context import set_forward_context from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.fused_moe.fused_moe import ( fused_topk, modular_triton_fused_moe) from vllm.model_executor.layers.fused_moe.moe_torch_iterative import ( fused_moe as iterative_moe) from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import ( rand_marlin_weight_fp4_like) from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import ( marlin_quant_fp8_torch) from vllm.model_executor.layers.quantization.utils.marlin_utils_test import ( awq_marlin_quantize, marlin_quantize) from vllm.model_executor.layers.quantization.utils.quant_utils import ( quantize_weights) from vllm.model_executor.models.mixtral import MixtralMoE from vllm.platforms import current_platform from vllm.scalar_type import ScalarType, scalar_types NUM_EXPERTS = [8, 64] EP_SIZE = [1, 4] TOP_KS = [2, 6] vllm_config = VllmConfig() vllm_config.scheduler_config.max_num_seqs = 128 vllm_config.scheduler_config.max_model_len = 8192 def run_moe_test( baseline: Union[Callable, torch.Tensor], moe_fn: Callable, a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor, score: torch.Tensor, topk: int, global_num_experts: int = -1, expert_map: Optional[torch.Tensor] = None, padding: bool = False, use_compile: bool = False, use_cudagraph: bool = False, atol: float = 2e-2, rtol: float = 0, ) -> torch.Tensor: if isinstance(baseline, torch.Tensor): baseline_output = baseline else: baseline_output = baseline(a, w1, w2, score, topk, global_num_experts=global_num_experts, expert_map=expert_map) # Pad the weight if moe padding is enabled if padding: w1 = F.pad(w1, (0, 128), "constant", 0)[..., 0:-128] w2 = F.pad(w2, (0, 128), "constant", 0)[..., 0:-128] if use_compile: moe_fn = torch.compile(moe_fn, backend="inductor", fullgraph=True) torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(score, 0) test_output = moe_fn(a, w1, w2, score, topk, global_num_experts=global_num_experts, expert_map=expert_map) if use_cudagraph: test_output.fill_(0) stream = torch.cuda.Stream() graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph, stream=stream): test_output = moe_fn(a, w1, w2, score, topk, global_num_experts=global_num_experts, expert_map=expert_map) torch.cuda.synchronize() graph.replay() torch.cuda.synchronize() torch.testing.assert_close(test_output, baseline_output, atol=atol, rtol=rtol) return baseline_output @pytest.mark.parametrize("m", [1, 33, 64, 222, 32768, 40000]) @pytest.mark.parametrize("n", [128, 1024, 2048]) @pytest.mark.parametrize("k", [128, 511, 1024]) @pytest.mark.parametrize("e", NUM_EXPERTS) @pytest.mark.parametrize("topk", TOP_KS) @pytest.mark.parametrize("ep_size", EP_SIZE) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("padding", [True, False]) @pytest.mark.parametrize("chunk_size", [8192]) def test_fused_moe( m: int, n: int, k: int, e: int, topk: int, ep_size: int, dtype: torch.dtype, padding: bool, chunk_size: int, monkeypatch, ): current_platform.seed_everything(7) monkeypatch.setenv("VLLM_FUSED_MOE_CHUNK_SIZE", str(chunk_size)) # # Setup test data # # # Setup test data # a = torch.randn((m, k), device="cuda", dtype=dtype) / 10 w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10 w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10 score = torch.randn((m, e), device="cuda", dtype=dtype) if ep_size > 1: local_e = e // ep_size e_ids = torch.randint(0, e, (local_e, ), device="cuda", dtype=torch.int32) e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32) e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32) w1 = w1[e_ids] w2 = w2[e_ids] else: e_map = None # # Setup test functions # m_fused_moe_fn = modular_triton_fused_moe(use_fp8_w8a8=False, use_int8_w8a8=False, use_int8_w8a16=False, use_int4_w4a16=False, per_act_token_quant=False, block_shape=None) def m_fused_moe( a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor, score: torch.Tensor, topk: int, global_num_experts: int = -1, expert_map: Optional[torch.Tensor] = None, ) -> torch.Tensor: topk_weights, topk_ids, _ = fused_topk(a, score, topk, False) return m_fused_moe_fn(a, w1, w2, topk_weights, topk_ids, global_num_experts=global_num_experts, expert_map=expert_map) fused_moe_fn = functools.partial(fused_moe, renormalize=False) # # Run tests # runner = functools.partial( run_moe_test, a=a, w1=w1, w2=w2, score=score, topk=topk, global_num_experts=e, expert_map=e_map, padding=padding, ) # Note: for now use_compile will error out if the problem size is # large enough to trigger chunking. I'm leaving the flag and # setup code in case we are able to revisit this later. use_compile = False use_cudagraph = (n >= 1024 and k >= 1024 and current_platform.is_cuda_alike()) with set_current_vllm_config(vllm_config): baseline_output = runner(torch_moe, iterative_moe) runner(baseline_output, fused_moe_fn, use_compile=use_compile, use_cudagraph=use_cudagraph) runner(baseline_output, m_fused_moe, use_compile=use_compile, use_cudagraph=use_cudagraph) @pytest.mark.parametrize("m", [1, 32, 222]) @pytest.mark.parametrize("n", [128, 1024, 2048]) @pytest.mark.parametrize("k", [128, 1024]) @pytest.mark.parametrize("e", NUM_EXPERTS) @pytest.mark.parametrize("topk", TOP_KS) @pytest.mark.parametrize("ep_size", EP_SIZE) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("group_size", [64, 128]) @pytest.mark.parametrize("has_zp", [True, False]) @pytest.mark.parametrize("weight_bits", [4, 8]) def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int, ep_size: int, dtype: torch.dtype, group_size: int, has_zp: bool, weight_bits: int): a = torch.randn((m, k), device="cuda", dtype=dtype) / 10 w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10 w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10 score = torch.randn((m, e), device="cuda", dtype=dtype) if weight_bits == 4: pack_factor = 2 quant_type = scalar_types.uint4 if has_zp else scalar_types.uint4b8 elif weight_bits == 8: pack_factor = 1 quant_type = scalar_types.uint8 if has_zp else scalar_types.uint8b128 w1_ref = w1.clone() w2_ref = w2.clone() w1_qweight = torch.empty((e, 2 * n, k // pack_factor), device="cuda", dtype=torch.uint8) w2_qweight = torch.empty((e, k, n // pack_factor), device="cuda", dtype=torch.uint8) w1_scales = torch.empty((e, 2 * n, k // group_size), device="cuda", dtype=dtype) w2_scales = torch.empty((e, k, n // group_size), device="cuda", dtype=dtype) w1_qzeros = torch.empty((e, 2 * n // pack_factor, k // group_size), device="cuda", dtype=torch.uint8) w2_qzeros = torch.empty((e, k // pack_factor, n // group_size), device="cuda", dtype=torch.uint8) for i in range(e * 2): expert_id = i % e if i // e == 0: w, w_ref, w_qweight, w_scales, w_qzeros = \ w1, w1_ref, w1_qweight, w1_scales, w1_qzeros else: w, w_ref, w_qweight, w_scales, w_qzeros = \ w2, w2_ref, w2_qweight, w2_scales, w2_qzeros weight, qweight, scales, qzeros = quantize_weights( w[expert_id].T, quant_type, group_size, has_zp, False) weight = weight.T qweight = qweight.T.contiguous().to(torch.uint8) scales = scales.T if has_zp: qzeros = qzeros.T.contiguous().to(torch.uint8) if weight_bits == 4: qweight = qweight[:, 1::2] * 16 + qweight[:, ::2] if has_zp: qzeros = qzeros[1::2, :] * 16 + qzeros[::2, :] w_ref[expert_id] = weight w_qweight[expert_id] = qweight w_scales[expert_id] = scales if has_zp: w_qzeros[expert_id] = qzeros if ep_size > 1: local_e = e // ep_size e_ids = torch.randint(0, e, (local_e, ), device="cuda", dtype=torch.int32) e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32) e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32) w1_ref = w1_ref[e_ids] w2_ref = w2_ref[e_ids] w1_qweight = w1_qweight[e_ids] w2_qweight = w2_qweight[e_ids] w1_scales = w1_scales[e_ids] w2_scales = w2_scales[e_ids] w1_qzeros = w1_qzeros[e_ids] w2_qzeros = w2_qzeros[e_ids] else: e_map = None with set_current_vllm_config(vllm_config): triton_output = fused_moe(a, w1_qweight, w2_qweight, score, topk, renormalize=False, use_int4_w4a16=weight_bits == 4, use_int8_w8a16=weight_bits == 8, global_num_experts=e, expert_map=e_map, w1_scale=w1_scales, w2_scale=w2_scales, w1_zp=w1_qzeros if has_zp else None, w2_zp=w2_qzeros if has_zp else None, block_shape=[0, group_size]) torch_output = torch_moe(a, w1_ref, w2_ref, score, topk, expert_map=e_map) torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) @pytest.mark.parametrize("padding", [True, False]) @pytest.mark.parametrize( "use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False]) @torch.inference_mode() def test_mixtral_moe(dtype: torch.dtype, padding: bool, use_rocm_aiter: bool, monkeypatch): """Make sure our Mixtral MoE implementation agrees with the one from huggingface.""" # clear the cache before every test from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( is_rocm_aiter_moe_enabled) is_rocm_aiter_moe_enabled.cache_clear() if use_rocm_aiter: monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1") if dtype == torch.float32: pytest.skip("AITER ROCm test skip for float32") monkeypatch.setenv('RANK', "0") monkeypatch.setenv('LOCAL_RANK', "0") monkeypatch.setenv('WORLD_SIZE', "1") monkeypatch.setenv('MASTER_ADDR', 'localhost') monkeypatch.setenv('MASTER_PORT', '12345') init_distributed_environment() # Instantiate our and huggingface's MoE blocks vllm_config.compilation_config.static_forward_context = dict() with (set_current_vllm_config(vllm_config), set_forward_context(None, vllm_config)): config = MixtralConfig() hf_moe = MixtralSparseMoeBlock(config).to(dtype).to("cuda") vllm_moe = MixtralMoE( num_experts=config.num_local_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, params_dtype=dtype, tp_size=1, dp_size=1, ).cuda() # Load the weights vllm_moe.gate.weight.data[:] = hf_moe.gate.weight.data for i in range(config.num_local_experts): weights = (hf_moe.experts[i].w1.weight.data, hf_moe.experts[i].w3.weight.data) vllm_moe.experts.w13_weight[i][:] = torch.cat(weights, dim=0) vllm_moe.experts.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data # Generate input batch of dimensions [batch_size, seq_len, hidden_dim] hf_inputs = torch.randn( (1, 64, config.hidden_size)).to(dtype).to("cuda") # vLLM uses 1D query [num_tokens, hidden_dim] vllm_inputs = hf_inputs.flatten(0, 1) # Pad the weight if moe padding is enabled if padding: vllm_moe.experts.w13_weight = Parameter(F.pad( vllm_moe.experts.w13_weight, (0, 128), "constant", 0)[..., 0:-128], requires_grad=False) torch.cuda.empty_cache() vllm_moe.experts.w2_weight = Parameter(F.pad( vllm_moe.experts.w2_weight, (0, 128), "constant", 0)[..., 0:-128], requires_grad=False) torch.cuda.empty_cache() # Run forward passes for both MoE blocks hf_states, _ = hf_moe.forward(hf_inputs) vllm_states = vllm_moe.forward(vllm_inputs) mixtral_moe_tol = { torch.float32: 1e-3, torch.float16: 1e-3, torch.bfloat16: 1e-2, } if use_rocm_aiter: # The values of rtol and atol are set based on the tests in ROCM AITER package. # noqa: E501 # https://github.com/ROCm/aiter/blob/dfed377f4be7da96ca2d75ac0761f569676f7240/op_tests/test_moe.py#L174 # noqa: E501 torch.testing.assert_close(hf_states.flatten(0, 1), vllm_states, rtol=0.01, atol=100) else: torch.testing.assert_close(hf_states.flatten(0, 1), vllm_states, rtol=mixtral_moe_tol[dtype], atol=mixtral_moe_tol[dtype]) def marlin_moe_generate_valid_test_cases(): import itertools m_list = [1, 123, 666] n_list = [128, 1024] k_list = [256, 2048] e_list = [4, 12] topk_list = [2, 3] ep_size_list = [1, 4] dtype_list = [torch.half, torch.bfloat16] group_size_list = [-1, 16, 32, 128] act_order_list = [True, False] quant_type_list = [ scalar_types.float4_e2m1f, scalar_types.float8_e4m3fn, scalar_types.uint4, scalar_types.uint4b8, scalar_types.uint8b128, ] is_k_full_list = [True, False] all_combinations = itertools.product(m_list, n_list, k_list, e_list, topk_list, ep_size_list, dtype_list, group_size_list, act_order_list, quant_type_list, is_k_full_list) def is_invalid(m, n, k, e, topk, ep_size, dtype, group_size, act_order, quant_type, is_k_full): if quant_type == scalar_types.float8_e4m3fn and \ group_size not in [-1, 128]: return False if quant_type == scalar_types.float4_e2m1f and group_size != 16: return False if quant_type != scalar_types.float4_e2m1f and group_size == 16: return False # Filter act_order if act_order: if group_size in (-1, k, n): return False if quant_type not in [scalar_types.uint4b8]: return False elif not is_k_full: return False return True cases = [] for case in all_combinations: if is_invalid(*case): cases.append(case) return cases @pytest.mark.flaky(reruns=2) @pytest.mark.parametrize(("m, n, k, e, topk, ep_size, dtype, group_size," "act_order, quant_type, is_k_full"), marlin_moe_generate_valid_test_cases()) @pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm") def test_fused_marlin_moe( m: int, n: int, k: int, e: int, topk: int, ep_size: int, dtype: torch.dtype, group_size: int, act_order: bool, quant_type: ScalarType, is_k_full: bool, ): torch.cuda.manual_seed(0) has_zp = quant_type in [scalar_types.uint4, scalar_types.uint8] if quant_type == scalar_types.float8_e4m3fn: if group_size not in [-1, 128]: return if act_order: return # Filter act_order if act_order: if quant_type == scalar_types.float8_e4m3fn: return if group_size == -1: return if group_size in (k, n): return if has_zp: return else: if not is_k_full: return if quant_type == scalar_types.float4_e2m1f and group_size != 16: return if quant_type != scalar_types.float4_e2m1f and group_size == 16: return a = torch.randn((m, k), device="cuda", dtype=dtype) / 10 w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 20 w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 20 if ep_size > 1: local_e = e // ep_size e_ids = torch.randperm(e, device="cuda", dtype=torch.int32)[:local_e] e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32) e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32) w1 = w1[e_ids] w2 = w2[e_ids] else: e_map = None w_ref1_l = [] qweight1_l = [] scales1_l = [] global_scale1_l = [] zeros1_l = [] g_idx1_l = [] sort_indices1_l = [] for i in range(w1.shape[0]): if quant_type == scalar_types.float4_e2m1f: w_ref1, qweight1, scales1, global_scale1 = \ rand_marlin_weight_fp4_like(w1[i], group_size) w_ref1_l.append(w_ref1.T) qweight1_l.append(qweight1) scales1_l.append(scales1) global_scale1_l.append(global_scale1) elif quant_type == scalar_types.float8_e4m3fn: w_ref1, qweight1, scales1 = marlin_quant_fp8_torch( w1[i], group_size) w_ref1_l.append(w_ref1.T) qweight1_l.append(qweight1) scales1_l.append(scales1) elif has_zp: w_ref1, qweight1, scales1, zeros1 = awq_marlin_quantize( w1[i].transpose(1, 0), quant_type, group_size) w_ref1_l.append(w_ref1.T) qweight1_l.append(qweight1) scales1_l.append(scales1) zeros1_l.append(zeros1) else: test_perm = torch.randperm(k) w_ref1, qweight1, scales1, g_idx1, sort_indices1, _ = \ marlin_quantize(w1[i].transpose(1, 0), quant_type, group_size, act_order, test_perm) w_ref1_l.append(w_ref1.T) qweight1_l.append(qweight1) scales1_l.append(scales1) g_idx1_l.append(g_idx1) sort_indices1_l.append(sort_indices1) w_ref1 = stack_and_dev(w_ref1_l) qweight1 = stack_and_dev(qweight1_l).contiguous() scales1 = stack_and_dev(scales1_l) global_scale1 = stack_and_dev(global_scale1_l) if global_scale1_l else None g_idx1 = stack_and_dev(g_idx1_l) if g_idx1_l else None zeros1 = stack_and_dev(zeros1_l) if zeros1_l else None sort_indices1 = stack_and_dev(sort_indices1_l) if sort_indices1_l else None w_ref2_l = [] qweight2_l = [] scales2_l = [] global_scale2_l = [] zeros2_l = [] g_idx2_l = [] sort_indices2_l = [] for i in range(w2.shape[0]): if quant_type == scalar_types.float4_e2m1f: w_ref2, qweight2, scales2, global_scale2 = \ rand_marlin_weight_fp4_like(w2[i], group_size) w_ref2_l.append(w_ref2.T) qweight2_l.append(qweight2) scales2_l.append(scales2) global_scale2_l.append(global_scale2) elif quant_type == scalar_types.float8_e4m3fn: w_ref2, qweight2, scales2 = marlin_quant_fp8_torch( w2[i], group_size) w_ref2_l.append(w_ref2.T) qweight2_l.append(qweight2) scales2_l.append(scales2) elif has_zp: w_ref2, qweight2, scales2, zeros2 = awq_marlin_quantize( w2[i].transpose(1, 0), quant_type, group_size) w_ref2_l.append(w_ref2.T) qweight2_l.append(qweight2) scales2_l.append(scales2) zeros2_l.append(zeros2) else: test_perm = torch.randperm(n) w_ref2, qweight2, scales2, g_idx2, sort_indices2, _ = \ marlin_quantize(w2[i].transpose(1, 0), quant_type, group_size, act_order, test_perm) w_ref2_l.append(w_ref2.T) qweight2_l.append(qweight2) scales2_l.append(scales2) g_idx2_l.append(g_idx2) sort_indices2_l.append(sort_indices2) w_ref2 = stack_and_dev(w_ref2_l) qweight2 = stack_and_dev(qweight2_l).contiguous() scales2 = stack_and_dev(scales2_l) global_scale2 = stack_and_dev(global_scale2_l) if global_scale2_l else None g_idx2 = stack_and_dev(g_idx2_l) if g_idx2_l else None zeros2 = stack_and_dev(zeros2_l) if zeros2_l else None sort_indices2 = stack_and_dev(sort_indices2_l) if sort_indices2_l else None score = torch.randn((m, e), device="cuda", dtype=dtype) topk_weights, topk_ids, _ = fused_topk(a, score, topk, False) with set_current_vllm_config(vllm_config): torch_output = torch_moe(a, w_ref1, w_ref2, score, topk, expert_map=e_map) marlin_output = torch.ops.vllm.fused_marlin_moe( a, qweight1, qweight2, scales1, scales2, score, topk_weights, topk_ids, global_num_experts=e, expert_map=e_map, global_scale1=global_scale1, global_scale2=global_scale2, g_idx1=g_idx1, g_idx2=g_idx2, sort_indices1=sort_indices1, sort_indices2=sort_indices2, w1_zeros=zeros1, w2_zeros=zeros2, quant_type_id=quant_type.id, is_k_full=is_k_full) torch.testing.assert_close(marlin_output, torch_output, atol=5e-2, rtol=0) def test_moe_align_block_size_opcheck(): num_experts = 4 block_size = 4 topk_ids = torch.randint(0, num_experts, (3, 4), dtype=torch.int32, device='cuda') max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1) sorted_ids = torch.empty((max_num_tokens_padded, ), dtype=torch.int32, device=topk_ids.device) sorted_ids.fill_(topk_ids.numel()) max_num_m_blocks = max_num_tokens_padded // block_size expert_ids = torch.empty((max_num_m_blocks, ), dtype=torch.int32, device=topk_ids.device) num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device) opcheck(torch.ops._moe_C.moe_align_block_size, (topk_ids, num_experts, block_size, sorted_ids, expert_ids, num_tokens_post_pad)) @pytest.mark.parametrize("m", [1, 33, 64, 222]) @pytest.mark.parametrize("topk", TOP_KS) @pytest.mark.parametrize("k", [128, 511, 1024]) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) @pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm") def test_moe_sum(m: int, topk: int, k: int, dtype: torch.dtype): input = torch.randn((m, topk, k), device="cuda", dtype=dtype) actual = torch.empty((m, k), device="cuda", dtype=dtype) expected = input.sum(dim=1) torch.ops._moe_C.moe_sum(input, actual) torch.testing.assert_close(actual, expected, atol=2e-2, rtol=0) opcheck(torch.ops._moe_C.moe_sum, (input, actual))