# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Iterator from enum import Enum from typing import NamedTuple, Optional import regex as re import torch from vllm import CompletionOutput from vllm.utils import make_tensor_with_pad from vllm.v1.sample.logits_processor import BatchUpdate, LogitsProcessor from vllm.v1.sample.metadata import SamplingMetadata class BatchLogprobsComposition(Enum): """Types of logprobs configs to include in test batch""" NONE = 0 SAMPLE = 1 PROMPT = 2 SAMPLE_PROMPT = 3 BatchLogprobsSpecType = list[tuple[Optional[int], Optional[int]]] def get_test_batch( batch_logprobs_composition: BatchLogprobsComposition ) -> BatchLogprobsSpecType: """Generate logprobs configs for a batch of requests A given request's logprobs configuration is (1) num_sample_logprobs and (2) num_prompt_logprobs. The batch logprobs configuration is the list of request logprobs configs. batch_logprobs_composition == NONE yields a batch with no sample or prompt logprobs batch_logprobs_composition == SAMPLE yields a batch with some requests configured for sample logprobs only, and others configured for no logprobs batch_logprobs_composition == PROMPT yields a batch with some requests configured for prompt logprobs only, and others configured for no logprobs batch_logprobs_composition == SAMPLE_PROMPT yields a batch with some requests configured for sample logprobs and prompt logprobs, some configured for only sample logprobs or only prompt logprobs, and some configured for no logprobs Args: batch_logprobs_composition: types of logprobs configs to include in batch Returns: list of (Optional[num_sample_logprobs], Optional[num_prompt_logprobs]) tuples """ if batch_logprobs_composition == BatchLogprobsComposition.NONE: # No requests with sample or prompt logprobs return [(None, None)] elif batch_logprobs_composition == BatchLogprobsComposition.SAMPLE: # Requests requiring sample logprobs or no logprobs return [ (None, None), (0, None), (5, None), (3, None), ] elif batch_logprobs_composition == BatchLogprobsComposition.PROMPT: # Requests requiring prompt logprobs or no logprobs return [ (None, None), (None, 0), (None, 6), (None, 5), ] elif batch_logprobs_composition == BatchLogprobsComposition.SAMPLE_PROMPT: # Requests requiring either no logprobs, just # sample logprobs, just prompt logprobs, or # both sample and prompt logprobs return [ (None, None), (0, None), (5, None), (3, None), (0, 3), (6, 0), (6, 3), (None, 6), (None, 5), (None, 0), ] else: raise ValueError("Invalid logprobs batch configuration for test.") def assert_incr_detok_str_matches_non_incr_detok_str( incremental_detokenization_str: str, non_incremental_detokenization_str: str, msg: str, ) -> None: """Compare incrementally detok. text to non-incrementally detok. text Fail if the strings mismatch after non-alphanumeric characters are stripped out. Rationale: incremental detokenization in the text generation process allows the tokenizer to adjust the next token text output based on the token's context in the string. However, logprobs detokenization detokenizes each token individually, and the resultant strings may include some non-alphanumeric placeholder characters where there could be i.e. whitespace. So, this function compares only the alphanumeric text between two strings and fails if there is a mismatch, which helps with validating logprobs detokenization. Args: incremental_detokenization_str: incrementally-detokenized generated text non_incremental_detokenization_str: non-incrementally-detokenized logprob tokens msg: error message if `assert` fails """ rgx = r'[^a-zA-Z0-9]+' assert (re.sub(rgx, '', incremental_detokenization_str) == re.sub( rgx, '', non_incremental_detokenization_str)), (msg) def compute_correct_cumulative_logprob( completion_output: CompletionOutput) -> float: """Compute known-good value for evaluating cumulative logprob Args: completion_output: completion output from engine Returns: Known-good cumulative logprob value """ token_ids = completion_output.token_ids logprobs = completion_output.logprobs assert logprobs is not None return sum([lp[tok_id].logprob for tok_id, lp in zip(token_ids, logprobs)]) def create_fake_logits(batch_size: int, vocab_size: int) -> torch.Tensor: fake_logits = torch.full((batch_size, vocab_size), 1e-2, dtype=torch.float) return fake_logits def create_penalty_tensor(batch_size: int, penalty_value: float, device: torch.device) -> torch.Tensor: return torch.full((batch_size, ), fill_value=penalty_value, dtype=torch.float, device=device) def create_prompt_tokens_tensor( prompt_token_ids: list[list[int]], vocab_size: int, device: torch.device, ) -> torch.Tensor: return make_tensor_with_pad( prompt_token_ids, pad=vocab_size, device=device, dtype=torch.int64, pin_memory=False, ) class LogitsprocsTestFakes(NamedTuple): """Wraps fake data structures to support testing""" logits: torch.Tensor sampling_metadata: SamplingMetadata def get_logitsprocs_by_cls( self, cls: type[LogitsProcessor], ) -> Iterator[LogitsProcessor]: """Yield logits processors of a specific class. Args: cls: :class:`LogitsProcessor` subclass Returns: Iterator over logits processors """ return (lp for lp in self.sampling_metadata.logitsprocs.all if isinstance(lp, cls)) def get_logitsprocs(self) -> Iterator[LogitsProcessor]: """Iterator over all logits processors.""" return self.sampling_metadata.logitsprocs.all def fake_update_logitsprocs_state( test_fakes: LogitsprocsTestFakes, batch_update: BatchUpdate, ) -> None: """Imitate logits processors persistent batch state update in engine core""" for logitproc in test_fakes.get_logitsprocs(): logitproc.update_state(batch_update) def fake_apply_logitsprocs( test_fakes: LogitsprocsTestFakes, slice_indices: list[int], ) -> torch.Tensor: """Imitate application of logits processors in engine core""" logits = test_fakes.logits[torch.tensor(slice_indices, dtype=torch.long)].clone() for processor in test_fakes.get_logitsprocs(): logits = processor.apply(logits) return logits