# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ This example shows how to run offline inference with a speculative decoding model on neuron. """ import os from vllm import LLM, SamplingParams # Sample prompts. prompts = [ "Hello, I am a language model and I can help", "The president of the United States is", "The capital of France is", ] def config_buckets(): """Configure context length and token gen buckets.""" # creates XLA hlo graphs for all the context length buckets. os.environ["NEURON_CONTEXT_LENGTH_BUCKETS"] = "128,512,1024,2048" # creates XLA hlo graphs for all the token gen buckets. os.environ["NEURON_TOKEN_GEN_BUCKETS"] = "128,512,1024,2048" def initialize_model(): """Create an LLM with speculative decoding.""" return LLM( model="openlm-research/open_llama_7b", speculative_config={ "model": "openlm-research/open_llama_3b", "num_speculative_tokens": 4, "max_model_len": 2048, }, max_num_seqs=4, max_model_len=2048, block_size=2048, use_v2_block_manager=True, device="neuron", tensor_parallel_size=32, ) def process_requests(model: LLM, sampling_params: SamplingParams): """Generate texts from prompts and print them.""" outputs = model.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") def main(): """Main function that sets up the model and processes prompts.""" config_buckets() model = initialize_model() # Create a sampling params object. sampling_params = SamplingParams(max_tokens=100, top_k=1) process_requests(model, sampling_params) if __name__ == "__main__": main()