# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import json import pytest import torch import vllm.envs as envs from vllm.compilation.collective_fusion import AsyncTPPass from vllm.config import (CompilationConfig, DeviceConfig, ModelConfig, PassConfig, VllmConfig) from vllm.distributed import (tensor_model_parallel_all_gather, tensor_model_parallel_reduce_scatter) from vllm.distributed.parallel_state import (init_distributed_environment, initialize_model_parallel) from vllm.platforms import current_platform from vllm.utils import update_environment_variables from ..models.registry import HF_EXAMPLE_MODELS from ..utils import (compare_two_settings, create_new_process_for_each_test, multi_gpu_test) from .backend import TestBackend prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] class TestMMRSModel(torch.nn.Module): def __init__(self, hidden_size=16): super().__init__() self.hidden_size = hidden_size self.gate_proj = torch.nn.Parameter(torch.empty( (self.hidden_size * 2, hidden_size)), requires_grad=False) # Initialize weights torch.nn.init.normal_(self.gate_proj, std=0.02) def forward(self, hidden_states): """ Forward pass implementing the mm + reduce scatter in the FX graph """ # Reshape input view = hidden_states.reshape(-1, self.hidden_size) # matrix multiplication permute = self.gate_proj.permute(1, 0) mm = torch.mm(view, permute) reduce_scatter = tensor_model_parallel_reduce_scatter(mm, dim=0) return reduce_scatter def ops_in_model_before(self): return [torch.ops.vllm.reduce_scatter.default] def ops_in_model_after(self): return [torch.ops.symm_mem.fused_matmul_reduce_scatter.default] class TestAGMMModel(torch.nn.Module): def __init__(self, hidden_size=16): super().__init__() self.hidden_size = hidden_size self.weight = torch.nn.Parameter(torch.empty( (hidden_size, hidden_size)), requires_grad=False) # Initialize weights torch.nn.init.normal_(self.weight, std=0.02) def forward(self, hidden_states): """ Forward pass implementing the mm + all gather in the FX graph """ # Reshape input view = hidden_states.reshape(-1, self.hidden_size) all_gather = tensor_model_parallel_all_gather(view, dim=0) permute = self.weight.permute(1, 0) mm = torch.mm(all_gather, permute) return mm def ops_in_model_before(self): return [torch.ops.vllm.all_gather.default] def ops_in_model_after(self): return [torch.ops.symm_mem.fused_all_gather_matmul.default] @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize("test_model", [TestMMRSModel, TestAGMMModel]) @pytest.mark.parametrize("batch_size", [8]) @pytest.mark.parametrize("seq_len", [16]) @pytest.mark.parametrize("hidden_size", [16]) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA") def test_async_tp_pass_replace(test_model: str, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype): num_processes = 2 def run_torch_spawn(fn, nprocs): # need to use torch.mp.spawn otherwise will have problems with # torch.distributed and cuda torch.multiprocessing.spawn(fn, args=(num_processes, test_model, batch_size, seq_len, hidden_size, dtype), nprocs=nprocs) run_torch_spawn(async_tp_pass_on_test_model, num_processes) def async_tp_pass_on_test_model(local_rank: int, world_size: int, test_model_cls: torch.nn.Module, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype): current_platform.seed_everything(0) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) torch.set_default_device(device) torch.set_default_dtype(dtype) update_environment_variables({ 'RANK': str(local_rank), 'LOCAL_RANK': str(local_rank), 'WORLD_SIZE': str(world_size), 'MASTER_ADDR': 'localhost', 'MASTER_PORT': '12345', }) # initialize distributed init_distributed_environment() initialize_model_parallel(tensor_model_parallel_size=world_size) # configure vllm config for SequenceParallelismPass vllm_config = VllmConfig() vllm_config.compilation_config = CompilationConfig(pass_config=PassConfig( enable_async_tp=True, ), ) vllm_config.device_config = DeviceConfig(device=torch.device("cuda")) # this is a fake model name to construct the model config # in the vllm_config, it's not really used. model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e" vllm_config.model_config = ModelConfig(model=model_name, task="auto", tokenizer=model_name, tokenizer_mode="auto", trust_remote_code=True, dtype=dtype, seed=42) async_tp_pass = AsyncTPPass(vllm_config) backend = TestBackend(async_tp_pass) model = test_model_cls(hidden_size) hidden_states = torch.randn((batch_size * seq_len, hidden_size), dtype=dtype, requires_grad=False) compiled_model = torch.compile(model, backend=backend) compiled_model(hidden_states) # In pre-nodes, all gather or reduce scatter should exist, # fused_matmul_reduce_scatter or fused_all_gather_matmul should not backend.check_before_ops(model.ops_in_model_before(), ops_fully_replaced=False) # In post-nodes, fused_matmul_reduce_scatter or \ # fused_all_gather_matmul should exist backend.check_after_ops(model.ops_in_model_after()) @create_new_process_for_each_test() @pytest.mark.parametrize("model_id", ["meta-llama/Llama-3.2-1B-Instruct"]) @pytest.mark.parametrize("tp_size", [2]) @pytest.mark.parametrize("async_tp_enabled", [True]) @pytest.mark.parametrize("distributed_backend", ["mp"]) @pytest.mark.parametrize("eager_mode", [False, True]) def test_async_tp_pass_correctness( model_id: str, tp_size: int, async_tp_enabled: bool, distributed_backend: str, eager_mode: bool, num_gpus_available: int, ): model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id) model_info.check_transformers_version(on_fail="skip") model_info.check_available_online(on_fail="skip") pp_size = 1 if num_gpus_available < tp_size: pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs") common_args = [ "--dtype", "bfloat16", "--max-model-len", "2048", "--max-num-seqs", "8", ] if eager_mode: common_args.append("--enforce-eager") compilation_config = { 'level': 3, 'compile_sizes': [2, 4, 8], 'splitting_ops': [], 'pass_config': { 'enable_async_tp': async_tp_enabled }, } async_tp_env = tp_env = { "VLLM_USE_V1": "1", } aysnc_tp_args = [ *common_args, "--tensor-parallel-size", str(tp_size), "--distributed-executor-backend", distributed_backend, "--compilation_config", json.dumps(compilation_config), ] tp_args = [ *common_args, "--tensor-parallel-size", str(tp_size), "--distributed-executor-backend", "mp", ] compare_two_settings(model_id, aysnc_tp_args, tp_args, async_tp_env, tp_env, method="generate")