# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import Optional, Union import torch from vllm.platforms import current_platform # Using the default value (240.0) from pytorch will cause accuracy # issue on dynamic quantization models. Here use 224.0 for rocm. ROCM_FP8FNUZ_MAX = 224.0 FP8_DTYPE = current_platform.fp8_dtype() def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor: return torch.as_tensor(x, dtype=torch.float32, device='cuda') def ref_dynamic_per_token_quant(x: torch.tensor, quant_dtype: torch.dtype, scale_ub: Optional[torch.tensor] = None) \ -> tuple[torch.tensor, torch.tensor]: assert quant_dtype in [torch.int8, FP8_DTYPE] if scale_ub is not None: assert quant_dtype == FP8_DTYPE qtype_traits = torch.iinfo(quant_dtype) if quant_dtype == torch.int8 \ else torch.finfo(quant_dtype) qtype_traits_max = ROCM_FP8FNUZ_MAX if current_platform.is_rocm() \ and current_platform.is_fp8_fnuz() \ else qtype_traits.max qtype_traits_min = -ROCM_FP8FNUZ_MAX if current_platform.is_rocm() \ and current_platform.is_fp8_fnuz() \ else qtype_traits.min qtype_max = as_float32_tensor(qtype_traits_max) s_1 = as_float32_tensor(1.0) s_512 = as_float32_tensor(512.0) # For fp8, in order to match the cuda kernel output, we have to do exactly # the same operations as in the corresponding fp8 kernel to prevent # rounding errors. # Compute scales x_token_max, _ = x.abs().max(dim=-1) x_token_max = as_float32_tensor(x_token_max) if scale_ub is not None: x_token_max = x_token_max.clamp(max=scale_ub) scales = (x_token_max / qtype_max)[:, None] # Quant if quant_dtype == torch.int8: iscales = as_float32_tensor(s_1 / scales) torch_out = as_float32_tensor(x) * iscales torch_out = torch_out.round() torch_out = torch_out.clamp(qtype_traits_min, qtype_traits_max).to(quant_dtype) else: assert quant_dtype == FP8_DTYPE min_scaling_factor = s_1 / (qtype_max * s_512) scales = scales.clamp(min=min_scaling_factor) torch_out = as_float32_tensor(x) / scales torch_out = torch_out.clamp(qtype_traits_min, qtype_traits_max).to(quant_dtype) return torch_out, scales # The int8 version is very similar. Incorporate the int8 version, like in # ref_dynamic_per_token_quant, when we have a dynamic_per_tensor int8 quant # kernel def ref_dynamic_per_tensor_fp8_quant(x: torch.tensor) \ -> tuple[torch.tensor, torch.tensor]: fp8_traits = torch.finfo(FP8_DTYPE) fp8_traits_max = ROCM_FP8FNUZ_MAX if current_platform.is_rocm() \ and current_platform.is_fp8_fnuz() \ else fp8_traits.max fp8_traits_min = -ROCM_FP8FNUZ_MAX if current_platform.is_rocm() \ and current_platform.is_fp8_fnuz() \ else fp8_traits.min fp8_max = as_float32_tensor(fp8_traits_max) one = as_float32_tensor(1.0) # For fp8, in order to match the cuda kernel output, we have to do exactly # the same operations as in the corresponding fp8 kernel to prevent # rounding errors. x_max = as_float32_tensor(x.abs().max()) ref_scale = x_max / fp8_max ref_iscale = one / ref_scale ref_out = (as_float32_tensor(x) * ref_iscale).clamp( fp8_traits_min, fp8_traits_max).to(FP8_DTYPE) return ref_out, ref_scale.view((1, )) def native_w8a8_block_matmul(A: torch.Tensor, B: torch.Tensor, As: torch.Tensor, Bs: torch.Tensor, block_size, output_dtype): """This function performs matrix multiplication with block-wise quantization using native torch. It is agnostic to the input data type and can be used for both int8 and fp8 data types. It takes two input tensors `A` and `B` (int8) with scales `As` and `Bs` (float32). The output is returned in the specified `output_dtype`. """ A = A.to(torch.float32) B = B.to(torch.float32) assert A.shape[-1] == B.shape[-1] assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2 assert len(block_size) == 2 block_n, block_k = block_size[0], block_size[1] assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1] assert A.shape[:-1] == As.shape[:-1] M = A.numel() // A.shape[-1] N, K = B.shape origin_C_shape = A.shape[:-1] + (N, ) A = A.reshape(M, A.shape[-1]) As = As.reshape(M, As.shape[-1]) n_tiles = (N + block_n - 1) // block_n k_tiles = (K + block_k - 1) // block_k assert n_tiles == Bs.shape[0] assert k_tiles == Bs.shape[1] C_shape = (M, N) C = torch.zeros(C_shape, dtype=torch.float32, device=A.device) A_tiles = [ A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles) ] B_tiles = [[ B[ j * block_n:min((j + 1) * block_n, N), i * block_k:min((i + 1) * block_k, K), ] for i in range(k_tiles) ] for j in range(n_tiles)] C_tiles = [ C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles) ] As_tiles = [As[:, i:i + 1] for i in range(k_tiles)] for i in range(k_tiles): for j in range(n_tiles): a = A_tiles[i] b = B_tiles[j][i] c = C_tiles[j] s = As_tiles[i] * Bs[j][i] c[:, :] += torch.matmul(a, b.t()) * s C = C.reshape(origin_C_shape).to(output_dtype) return C