# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Retrieval Augmented Generation (RAG) Implementation with Langchain ================================================================== This script demonstrates a RAG implementation using LangChain, Milvus and vLLM. RAG enhances LLM responses by retrieving relevant context from a document collection. Features: - Web content loading and chunking - Vector storage with Milvus - Embedding generation with vLLM - Question answering with context Prerequisites: 1. Install dependencies: pip install -U vllm \ langchain_milvus langchain_openai \ langchain_community beautifulsoup4 \ langchain-text-splitters 2. Start services: # Start embedding service (port 8000) vllm serve ssmits/Qwen2-7B-Instruct-embed-base # Start chat service (port 8001) vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001 Usage: python retrieval_augmented_generation_with_langchain.py Notes: - Ensure both vLLM services are running before executing - Default ports: 8000 (embedding), 8001 (chat) - First run may take time to download models """ import argparse from argparse import Namespace from typing import Any from langchain_community.document_loaders import WebBaseLoader from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_milvus import Milvus from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter def load_and_split_documents(config: dict[str, Any]): """ Load and split documents from web URL """ try: loader = WebBaseLoader(web_paths=(config["url"],)) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=config["chunk_size"], chunk_overlap=config["chunk_overlap"], ) return text_splitter.split_documents(docs) except Exception as e: print(f"Error loading document from {config['url']}: {str(e)}") raise def init_vectorstore(config: dict[str, Any], documents: list[Document]): """ Initialize vector store with documents """ return Milvus.from_documents( documents=documents, embedding=OpenAIEmbeddings( model=config["embedding_model"], openai_api_key=config["vllm_api_key"], openai_api_base=config["vllm_embedding_endpoint"], ), connection_args={"uri": config["uri"]}, drop_old=True, ) def init_llm(config: dict[str, Any]): """ Initialize llm """ return ChatOpenAI( model=config["chat_model"], openai_api_key=config["vllm_api_key"], openai_api_base=config["vllm_chat_endpoint"], ) def get_qa_prompt(): """ Get question answering prompt template """ template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. Question: {question} Context: {context} Answer: """ return PromptTemplate.from_template(template) def format_docs(docs: list[Document]): """ Format documents for prompt """ return "\n\n".join(doc.page_content for doc in docs) def create_qa_chain(retriever: Any, llm: ChatOpenAI, prompt: PromptTemplate): """ Set up question answering chain """ return ( { "context": retriever | format_docs, "question": RunnablePassthrough(), } | prompt | llm | StrOutputParser() ) def get_parser() -> argparse.ArgumentParser: """ Parse command line arguments """ parser = argparse.ArgumentParser(description="RAG with vLLM and langchain") # Add command line arguments parser.add_argument( "--vllm-api-key", default="EMPTY", help="API key for vLLM compatible services" ) parser.add_argument( "--vllm-embedding-endpoint", default="http://localhost:8000/v1", help="Base URL for embedding service", ) parser.add_argument( "--vllm-chat-endpoint", default="http://localhost:8001/v1", help="Base URL for chat service", ) parser.add_argument("--uri", default="./milvus.db", help="URI for Milvus database") parser.add_argument( "--url", default=("https://docs.vllm.ai/en/latest/getting_started/quickstart.html"), help="URL of the document to process", ) parser.add_argument( "--embedding-model", default="ssmits/Qwen2-7B-Instruct-embed-base", help="Model name for embeddings", ) parser.add_argument( "--chat-model", default="qwen/Qwen1.5-0.5B-Chat", help="Model name for chat" ) parser.add_argument( "-i", "--interactive", action="store_true", help="Enable interactive Q&A mode" ) parser.add_argument( "-k", "--top-k", type=int, default=3, help="Number of top results to retrieve" ) parser.add_argument( "-c", "--chunk-size", type=int, default=1000, help="Chunk size for document splitting", ) parser.add_argument( "-o", "--chunk-overlap", type=int, default=200, help="Chunk overlap for document splitting", ) return parser def init_config(args: Namespace): """ Initialize configuration settings from command line arguments """ return { "vllm_api_key": args.vllm_api_key, "vllm_embedding_endpoint": args.vllm_embedding_endpoint, "vllm_chat_endpoint": args.vllm_chat_endpoint, "uri": args.uri, "embedding_model": args.embedding_model, "chat_model": args.chat_model, "url": args.url, "chunk_size": args.chunk_size, "chunk_overlap": args.chunk_overlap, "top_k": args.top_k, } def main(): # Parse command line arguments args = get_parser().parse_args() # Initialize configuration config = init_config(args) # Load and split documents documents = load_and_split_documents(config) # Initialize vector store and retriever vectorstore = init_vectorstore(config, documents) retriever = vectorstore.as_retriever(search_kwargs={"k": config["top_k"]}) # Initialize llm and prompt llm = init_llm(config) prompt = get_qa_prompt() # Set up QA chain qa_chain = create_qa_chain(retriever, llm, prompt) # Interactive mode if args.interactive: print("\nWelcome to Interactive Q&A System!") print("Enter 'q' or 'quit' to exit.") while True: question = input("\nPlease enter your question: ") if question.lower() in ["q", "quit"]: print("\nThank you for using! Goodbye!") break output = qa_chain.invoke(question) print(output) else: # Default single question mode question = "How to install vLLM?" output = qa_chain.invoke(question) print("-" * 50) print(output) print("-" * 50) if __name__ == "__main__": main()