# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import base64 import io import shutil from tempfile import TemporaryDirectory import openai # use the official client for correctness check import pytest import pytest_asyncio import torch # downloading lora to test lora requests from huggingface_hub import snapshot_download from openai import BadRequestError from transformers import AutoConfig, AutoTokenizer from ...utils import RemoteOpenAIServer # any model with a chat template should work here MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" LORA_NAME = "typeof/zephyr-7b-beta-lora" CONFIG = AutoConfig.from_pretrained(MODEL_NAME) @pytest.fixture(scope="module") def zephyr_lora_files(): return snapshot_download(repo_id=LORA_NAME) @pytest.fixture(scope="module") def zephyr_lora_added_tokens_files(zephyr_lora_files): tmp_dir = TemporaryDirectory() tmp_model_dir = f"{tmp_dir.name}/zephyr" shutil.copytree(zephyr_lora_files, tmp_model_dir) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Copy tokenizer to adapter and add some unique tokens # 32000, 32001, 32002 added = tokenizer.add_tokens(["vllm1", "vllm2", "vllm3"], special_tokens=True) assert added == 3 tokenizer.save_pretrained(tmp_model_dir) yield tmp_model_dir tmp_dir.cleanup() @pytest.fixture(scope="module") def default_server_args( zephyr_lora_files, zephyr_lora_added_tokens_files, ) -> list[str]: return [ # use half precision for speed and memory savings in CI environment "--dtype", "bfloat16", "--max-model-len", "8192", "--max-num-seqs", "128", "--enforce-eager", # Prompt Embeds server args "--enable-prompt-embeds", "--no-enable-chunked-prefill", ] @pytest.fixture(scope="module", params=["", "--disable-frontend-multiprocessing"]) def server_with_prompt_embeds(default_server_args, request): if request.param: default_server_args.append(request.param) with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server: yield remote_server @pytest_asyncio.fixture async def client_with_prompt_embeds(server_with_prompt_embeds): async with server_with_prompt_embeds.get_async_client() as async_client: yield async_client def create_dummy_embeds(num_tokens: int = 5) -> str: """Create dummy embeddings and return them as base64 encoded string.""" dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size) buffer = io.BytesIO() torch.save(dummy_embeds, buffer) return base64.b64encode(buffer.getvalue()).decode('utf-8') @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_completions_with_prompt_embeds( client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str): # Test case: Single prompt embeds input encoded_embeds = create_dummy_embeds() completion = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": encoded_embeds}) assert len(completion.choices[0].text) >= 1 assert completion.choices[0].prompt_logprobs is None # Test case: batch completion with prompt_embeds encoded_embeds2 = create_dummy_embeds() completion = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]}) assert len(completion.choices) == 2 assert len(completion.choices[0].text) >= 1 assert len(completion.choices[1].text) >= 1 # Test case: streaming with prompt_embeds encoded_embeds = create_dummy_embeds() single_completion = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": encoded_embeds}) single_output = single_completion.choices[0].text stream = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, stream=True, extra_body={"prompt_embeds": encoded_embeds}) chunks = [] finish_reason_count = 0 async for chunk in stream: chunks.append(chunk.choices[0].text) if chunk.choices[0].finish_reason is not None: finish_reason_count += 1 assert finish_reason_count == 1 assert chunk.choices[0].finish_reason == "length" assert chunk.choices[0].text assert "".join(chunks) == single_output # Test case: batch streaming with prompt_embeds encoded_embeds2 = create_dummy_embeds() stream = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, stream=True, extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]}) chunks_stream_embeds: list[list[str]] = [[], []] finish_reason_count = 0 async for chunk in stream: chunks_stream_embeds[chunk.choices[0].index].append( chunk.choices[0].text) if chunk.choices[0].finish_reason is not None: finish_reason_count += 1 assert finish_reason_count == 2 assert chunk.choices[0].finish_reason == "length" assert chunk.choices[0].text assert len(chunks_stream_embeds[0]) > 0 assert len(chunks_stream_embeds[1]) > 0 # Test case: mixed text and prompt_embeds encoded_embeds = create_dummy_embeds() completion_mixed = await client_with_prompt_embeds.completions.create( model=model_name, prompt="This is a prompt", max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": encoded_embeds}) assert len(completion.choices) == 2 completion_text_only = await client_with_prompt_embeds.completions.create( model=model_name, prompt="This is a prompt", max_tokens=5, temperature=0.0, ) completion_embeds_only = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": encoded_embeds}) # Embeddings responses should be handled first assert completion_mixed.choices[0].text == completion_embeds_only.choices[ 0].text assert completion_mixed.choices[1].text == completion_text_only.choices[ 0].text @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_completions_errors_with_prompt_embeds( client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str): # Test error case: invalid prompt_embeds with pytest.raises(BadRequestError): await client_with_prompt_embeds.completions.create( prompt="", model=model_name, max_tokens=5, temperature=0.0, extra_body={"prompt_embeds": "invalid_base64"}) @pytest.mark.asyncio @pytest.mark.parametrize("logprobs_arg", [1, 0]) @pytest.mark.parametrize("model_name", [MODEL_NAME]) async def test_completions_with_logprobs_and_prompt_embeds( client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int, model_name: str): # Test case: Logprobs using prompt_embeds encoded_embeds = create_dummy_embeds() completion = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, echo=False, logprobs=logprobs_arg, extra_body={"prompt_embeds": encoded_embeds}) logprobs = completion.choices[0].logprobs assert logprobs is not None assert len(logprobs.text_offset) == 5 assert len(logprobs.token_logprobs) == 5 assert len(logprobs.top_logprobs) == 5 for top_logprobs in logprobs.top_logprobs[1:]: assert max(logprobs_arg, 1) <= len(top_logprobs) <= logprobs_arg + 1 assert len(logprobs.tokens) == 5 # Test case: Log probs with batch completion and prompt_embeds encoded_embeds2 = create_dummy_embeds() completion = await client_with_prompt_embeds.completions.create( model=model_name, prompt="", # Add empty prompt as required parameter max_tokens=5, temperature=0.0, echo=False, logprobs=logprobs_arg, extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]}) assert len(completion.choices) == 2 for choice in completion.choices: logprobs = choice.logprobs assert logprobs is not None assert len(logprobs.text_offset) == 5 assert len(logprobs.token_logprobs) == 5 assert len(logprobs.top_logprobs) == 5 for top_logprobs in logprobs.top_logprobs[1:]: assert max(logprobs_arg, 1) <= len(top_logprobs) <= logprobs_arg + 1 assert len(logprobs.tokens) == 5