# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import asyncio from contextlib import ExitStack from typing import Optional from unittest.mock import MagicMock import pytest from vllm import SamplingParams from vllm.assets.image import ImageAsset from vllm.config import VllmConfig from vllm.engine.arg_utils import AsyncEngineArgs from vllm.inputs import PromptType from vllm.platforms import current_platform from vllm.sampling_params import RequestOutputKind from vllm.utils import set_default_torch_num_threads from vllm.v1.engine.async_llm import AsyncLLM from vllm.v1.metrics.loggers import LoggingStatLogger if not current_platform.is_cuda(): pytest.skip(reason="V1 currently only supported on CUDA.", allow_module_level=True) TEXT_ENGINE_ARGS = AsyncEngineArgs( model="meta-llama/Llama-3.2-1B-Instruct", enforce_eager=True, disable_log_requests=True, ) VISION_ENGINE_ARGS = AsyncEngineArgs(model="Qwen/Qwen2-VL-2B-Instruct", enforce_eager=True, disable_log_requests=True) TEXT_PROMPT = "Hello my name is Robert and" VISION_PROMPT_TEMPLATE = ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>" "\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" "What is in the image?<|im_end|>\n" "<|im_start|>assistant\n") VISION_PROMPT = { "prompt": VISION_PROMPT_TEMPLATE, "multi_modal_data": { "image": ImageAsset("stop_sign").pil_image }, } async def generate( engine: AsyncLLM, request_id: str, prompt: PromptType, output_kind: RequestOutputKind, max_tokens: int, n: int = 1, prompt_logprobs: Optional[int] = None, cancel_after: Optional[int] = None, ) -> tuple[int, str]: # Ensure generate doesn't complete too fast for cancellation test. await asyncio.sleep(0.2) count = 0 sampling_params = SamplingParams( max_tokens=max_tokens, ignore_eos=True, output_kind=output_kind, temperature=0.5, seed=33, n=n, prompt_logprobs=prompt_logprobs, ) async for out in engine.generate(request_id=request_id, prompt=prompt, sampling_params=sampling_params): num_tokens = sum(len(output.token_ids) for output in out.outputs) if output_kind == RequestOutputKind.DELTA: count += num_tokens else: count = num_tokens if cancel_after is not None and count >= cancel_after: return count, request_id await asyncio.sleep(0.0) return count, request_id @pytest.mark.parametrize( "output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY]) @pytest.mark.parametrize( "engine_args,prompt", [(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)], ) @pytest.mark.asyncio async def test_load( monkeypatch: pytest.MonkeyPatch, output_kind: RequestOutputKind, engine_args: AsyncEngineArgs, prompt: PromptType, ): # TODO(rickyx): Remove monkeypatch once we have a better way to test V1 # so that in the future when we switch, we don't have to change all the # tests. with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args(engine_args) after.callback(engine.shutdown) NUM_REQUESTS = 100 NUM_EXPECTED_TOKENS = 10 request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)] # Create concurrent requests. tasks = [] for request_id in request_ids: tasks.append( asyncio.create_task( generate(engine, request_id, prompt, output_kind, NUM_EXPECTED_TOKENS))) # Confirm that we got all the EXPECTED tokens from the requests. done, pending = await asyncio.wait(tasks, return_when=asyncio.FIRST_EXCEPTION) for task in pending: task.cancel() for task in done: num_generated_tokens, request_id = await task assert num_generated_tokens == NUM_EXPECTED_TOKENS, ( f"{request_id} generated {num_generated_tokens} but " f"expected {NUM_EXPECTED_TOKENS}") assert not engine.output_processor.has_unfinished_requests() @pytest.mark.parametrize( "output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY]) @pytest.mark.parametrize( "engine_args,prompt", [(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)], ) @pytest.mark.asyncio async def test_abort( monkeypatch: pytest.MonkeyPatch, output_kind: RequestOutputKind, engine_args: AsyncEngineArgs, prompt: PromptType, ): with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args(engine_args) after.callback(engine.shutdown) NUM_REQUESTS = 100 NUM_EXPECTED_TOKENS = 100 NUM_EXPECTED_TOKENS_LONG = 50000 REQUEST_IDS_TO_ABORT = range(1, 100, 10) PARALLEL_SAMPLE_REQ_IDS = range(1, 100, 15) request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)] # Create concurrent requests. tasks: list[asyncio.Task] = [] for idx, request_id in enumerate(request_ids): max_tokens = (NUM_EXPECTED_TOKENS_LONG if (idx in REQUEST_IDS_TO_ABORT) else NUM_EXPECTED_TOKENS) n = 3 if idx in PARALLEL_SAMPLE_REQ_IDS else 1 tasks.append( asyncio.create_task( generate(engine, request_id, prompt, output_kind, max_tokens, n))) # API server cancels requests when they disconnect. for idx in REQUEST_IDS_TO_ABORT: tasks[idx].cancel() await asyncio.sleep(0.1) # Confirm the other requests are okay. for idx, task in enumerate(tasks): # Confirm that it was actually canceled. if idx in REQUEST_IDS_TO_ABORT: with pytest.raises(asyncio.CancelledError): await task else: # Otherwise, make sure the request was not impacted. num_generated_tokens, request_id = await task n = 3 if idx in PARALLEL_SAMPLE_REQ_IDS else 1 expected_tokens = NUM_EXPECTED_TOKENS * n assert num_generated_tokens == expected_tokens, ( f"{request_id} generated {num_generated_tokens} but " f"expected {expected_tokens}") # Make sure all aborted requests were really aborted. assert not engine.output_processor.has_unfinished_requests() # Confirm we can do another generation. request_id = f"request-{REQUEST_IDS_TO_ABORT[0]}" task = asyncio.create_task( generate(engine, request_id, prompt, output_kind, NUM_EXPECTED_TOKENS)) num_generated_tokens, request_id = await task assert num_generated_tokens == NUM_EXPECTED_TOKENS assert not engine.output_processor.has_unfinished_requests() @pytest.mark.parametrize("n", [1, 3]) @pytest.mark.parametrize( "engine_args,prompt", [(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)], ) @pytest.mark.asyncio async def test_finished_flag( monkeypatch: pytest.MonkeyPatch, n: int, engine_args: AsyncEngineArgs, prompt: PromptType, ): with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args(engine_args) after.callback(engine.shutdown) sampling_params = SamplingParams( max_tokens=100, output_kind=RequestOutputKind.DELTA, temperature=1.0, seed=33, n=n, ) outputs = [ out async for out in engine.generate(request_id="request-33", prompt=prompt, sampling_params=sampling_params) ] # Assert only the last output has the finished flag set assert all(not out.finished for out in outputs[:-1]) assert outputs[-1].finished @pytest.mark.parametrize( "engine_args,prompt", [(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)], ) @pytest.mark.asyncio async def test_mid_stream_cancellation(monkeypatch: pytest.MonkeyPatch, engine_args: AsyncEngineArgs, prompt: PromptType): """Test that requests can be cancelled mid-stream.""" with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args(engine_args) after.callback(engine.shutdown) NUM_REQUESTS = 100 NUM_TOKENS = 1000 NUM_EXPECTED_TOKENS = 20 request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)] # Create concurrent requests that will be cancelled mid-stream tasks = [] for request_id in request_ids: tasks.append( asyncio.create_task( generate( engine, request_id, prompt, RequestOutputKind.DELTA, NUM_TOKENS, cancel_after=NUM_EXPECTED_TOKENS, ))) # Wait for all tasks to complete results = await asyncio.gather(*tasks) # Verify all tasks were cancelled at the expected point for num_generated_tokens, request_id in results: assert num_generated_tokens == NUM_EXPECTED_TOKENS, ( f"{request_id} generated {num_generated_tokens} tokens but " f"expected to cancel after {NUM_EXPECTED_TOKENS}") # Make sure no requests are left hanging assert not engine.output_processor.has_unfinished_requests() # Confirm we can reuse the request id after the cancellations. request_id = request_ids[0] task = asyncio.create_task( generate(engine, request_id, prompt, RequestOutputKind.DELTA, NUM_EXPECTED_TOKENS)) num_generated_tokens, request_id = await task assert num_generated_tokens == NUM_EXPECTED_TOKENS assert not engine.output_processor.has_unfinished_requests() class MockLoggingStatLogger(LoggingStatLogger): def __init__(self, vllm_config: VllmConfig, engine_index: int = 0): super().__init__(vllm_config, engine_index) self.log = MagicMock() @pytest.mark.asyncio async def test_customize_loggers(monkeypatch): """Test that we can customize the loggers. If a customized logger is provided at the init, it should be used directly. """ with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args( TEXT_ENGINE_ARGS, stat_loggers=[MockLoggingStatLogger], ) after.callback(engine.shutdown) await engine.do_log_stats() assert len(engine.stat_loggers) == 1 assert len(engine.stat_loggers[0]) == 1 engine.stat_loggers[0][0].log.assert_called_once() @pytest.mark.asyncio(scope="module") async def test_dp_rank_argument(monkeypatch: pytest.MonkeyPatch): with monkeypatch.context() as m, ExitStack() as after: m.setenv("VLLM_USE_V1", "1") with set_default_torch_num_threads(1): engine = AsyncLLM.from_engine_args(TEXT_ENGINE_ARGS) after.callback(engine.shutdown) sampling_params = SamplingParams(max_tokens=100, output_kind=RequestOutputKind.DELTA, temperature=1.0, seed=33) # Test with valid DP rank. async for _ in engine.generate(request_id="request-34", prompt=TEXT_PROMPT, sampling_params=sampling_params, data_parallel_rank=0): pass # Test with out-of-range DP rank. with pytest.raises(ValueError): async for _ in engine.generate(request_id="request-35", prompt=TEXT_PROMPT, sampling_params=sampling_params, data_parallel_rank=1): pass