# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Demonstrates how to achieve reproducibility in vLLM. Main article: https://docs.vllm.ai/en/latest/usage/reproducibility.html """ import os import random from vllm import LLM, SamplingParams # V1 only: Turn off multiprocessing to make the scheduling deterministic. os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0" # V0 only: Set the global seed. The default seed is None, which is # not reproducible. SEED = 42 prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) def main(): llm = LLM(model="facebook/opt-125m", seed=SEED) outputs = llm.generate(prompts, sampling_params) print("-" * 50) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}") print("-" * 50) # Try generating random numbers outside vLLM # The same number is output across runs, meaning that the random state # in the user code has been updated by vLLM print(random.randint(0, 100)) if __name__ == "__main__": main()