# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """Example for starting a Gradio OpenAI Chatbot Webserver Start vLLM API server: vllm serve meta-llama/Llama-2-7b-chat-hf Start Gradio OpenAI Chatbot Webserver: python examples/online_serving/gradio_openai_chatbot_webserver.py \ -m meta-llama/Llama-2-7b-chat-hf Note that `pip install --upgrade gradio` is needed to run this example. More details: https://github.com/gradio-app/gradio If your antivirus software blocks the download of frpc for gradio, you can install it manually by following these steps: 1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64 2. Rename the downloaded file to: frpc_linux_amd64_v0.3 3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc """ import argparse import gradio as gr from openai import OpenAI def format_history_to_openai(history): history_openai_format = [ {"role": "system", "content": "You are a great AI assistant."} ] for human, assistant in history: history_openai_format.append({"role": "user", "content": human}) history_openai_format.append({"role": "assistant", "content": assistant}) return history_openai_format def predict(message, history, client, model_name, temp, stop_token_ids): # Format history to OpenAI chat format history_openai_format = format_history_to_openai(history) history_openai_format.append({"role": "user", "content": message}) # Send request to OpenAI API (vLLM server) stream = client.chat.completions.create( model=model_name, messages=history_openai_format, temperature=temp, stream=True, extra_body={ "repetition_penalty": 1, "stop_token_ids": [int(id.strip()) for id in stop_token_ids.split(",")] if stop_token_ids else [], }, ) # Collect all chunks and concatenate them into a full message full_message = "" for chunk in stream: full_message += chunk.choices[0].delta.content or "" # Return the full message as a single response return full_message def parse_args(): parser = argparse.ArgumentParser( description="Chatbot Interface with Customizable Parameters" ) parser.add_argument( "--model-url", type=str, default="http://localhost:8000/v1", help="Model URL" ) parser.add_argument( "-m", "--model", type=str, required=True, help="Model name for the chatbot" ) parser.add_argument( "--temp", type=float, default=0.8, help="Temperature for text generation" ) parser.add_argument( "--stop-token-ids", type=str, default="", help="Comma-separated stop token IDs" ) parser.add_argument("--host", type=str, default=None) parser.add_argument("--port", type=int, default=8001) return parser.parse_args() def build_gradio_interface(client, model_name, temp, stop_token_ids): def chat_predict(message, history): return predict(message, history, client, model_name, temp, stop_token_ids) return gr.ChatInterface( fn=chat_predict, title="Chatbot Interface", description="A simple chatbot powered by vLLM", ) def main(): # Parse the arguments args = parse_args() # Set OpenAI's API key and API base to use vLLM's API server openai_api_key = "EMPTY" openai_api_base = args.model_url # Create an OpenAI client client = OpenAI(api_key=openai_api_key, base_url=openai_api_base) # Define the Gradio chatbot interface using the predict function gradio_interface = build_gradio_interface( client, args.model, args.temp, args.stop_token_ids ) gradio_interface.queue().launch( server_name=args.host, server_port=args.port, share=True ) if __name__ == "__main__": main()