# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ This script demonstrates how to use the vLLM API server to perform audio transcription with the `openai/whisper-large-v3` model. Before running this script, you must start the vLLM server with the following command: vllm serve openai/whisper-large-v3 Requirements: - vLLM with audio support - openai Python SDK - httpx for streaming support The script performs: 1. Synchronous transcription using OpenAI-compatible API. 2. Streaming transcription using raw HTTP request to the vLLM server. """ import asyncio from openai import AsyncOpenAI, OpenAI from vllm.assets.audio import AudioAsset def sync_openai(audio_path: str, client: OpenAI): """ Perform synchronous transcription using OpenAI-compatible API. """ with open(audio_path, "rb") as f: transcription = client.audio.transcriptions.create( file=f, model="openai/whisper-large-v3", language="en", response_format="json", temperature=0.0, # Additional sampling params not provided by OpenAI API. extra_body=dict( seed=4419, repetition_penalty=1.3, ), ) print("transcription result:", transcription.text) async def stream_openai_response(audio_path: str, client: AsyncOpenAI): """ Perform asynchronous transcription using OpenAI-compatible API. """ print("\ntranscription result:", end=" ") with open(audio_path, "rb") as f: transcription = await client.audio.transcriptions.create( file=f, model="openai/whisper-large-v3", language="en", response_format="json", temperature=0.0, # Additional sampling params not provided by OpenAI API. extra_body=dict( seed=420, top_p=0.6, ), stream=True, ) async for chunk in transcription: if chunk.choices: content = chunk.choices[0].get("delta", {}).get("content") print(content, end="", flush=True) print() # Final newline after stream ends def main(): mary_had_lamb = str(AudioAsset("mary_had_lamb").get_local_path()) winning_call = str(AudioAsset("winning_call").get_local_path()) # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) sync_openai(mary_had_lamb, client) # Run the asynchronous function client = AsyncOpenAI( api_key=openai_api_key, base_url=openai_api_base, ) asyncio.run(stream_openai_response(winning_call, client)) if __name__ == "__main__": main()