# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Example to deploy DeepSeek R1 or V3 with Ray Serve LLM. See more details at: https://docs.ray.io/en/latest/serve/tutorials/serve-deepseek.html And see Ray Serve LLM documentation at: https://docs.ray.io/en/latest/serve/llm/serving-llms.html Run `python3 ray_serve_deepseek.py` to deploy the model. """ from ray import serve from ray.serve.llm import LLMConfig, build_openai_app llm_config = LLMConfig( model_loading_config={ "model_id": "deepseek", # Since DeepSeek model is huge, it is recommended to pre-download # the model to local disk, say /path/to/the/model and specify: # model_source="/path/to/the/model" "model_source": "deepseek-ai/DeepSeek-R1", }, deployment_config={ "autoscaling_config": { "min_replicas": 1, "max_replicas": 1, } }, # Change to the accelerator type of the node accelerator_type="H100", runtime_env={"env_vars": {"VLLM_USE_V1": "1"}}, # Customize engine arguments as needed (e.g. vLLM engine kwargs) engine_kwargs={ "tensor_parallel_size": 8, "pipeline_parallel_size": 2, "gpu_memory_utilization": 0.92, "dtype": "auto", "max_num_seqs": 40, "max_model_len": 16384, "enable_chunked_prefill": True, "enable_prefix_caching": True, "trust_remote_code": True, }, ) # Deploy the application llm_app = build_openai_app({"llm_configs": [llm_config]}) serve.run(llm_app)