# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import torch import vllm.envs as envs from vllm.compilation.fix_functionalization import FixFunctionalizationPass from vllm.compilation.fusion import FusionPass from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func from vllm.compilation.noop_elimination import NoOpEliminationPass from vllm.compilation.sequence_parallelism import SequenceParallelismPass from vllm.config import (CompilationConfig, DeviceConfig, ModelConfig, PassConfig, VllmConfig) from vllm.distributed import tensor_model_parallel_all_reduce from vllm.distributed.parallel_state import (init_distributed_environment, initialize_model_parallel) from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.quantization.utils.w8a8_utils import ( Fp8LinearOp) from vllm.platforms import current_platform from vllm.utils import update_environment_variables from ..utils import multi_gpu_test from .backend import TestBackend FP8_DTYPE = current_platform.fp8_dtype() prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] class TestModel(torch.nn.Module): def __init__(self, hidden_size=16, intermediate_size=32, vllm_config: VllmConfig = None): super().__init__() self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.gate_proj = torch.nn.Parameter( torch.empty((intermediate_size, hidden_size))) self.norm = RMSNorm(intermediate_size, 1e-05) # Initialize weights torch.nn.init.normal_(self.gate_proj, std=0.02) def forward(self, hidden_states, residual): """ Forward pass implementing the operations in the FX graph Args: hidden_states: Input tensor residual: Residual tensor from previous layer Returns: Tuple containing the output tensor """ # Reshape input view = hidden_states.reshape(-1, self.hidden_size) #matrix multiplication permute = self.gate_proj.permute(1, 0) mm = torch.mm(view, permute) # Tensor parallel all-reduce all_reduce = tensor_model_parallel_all_reduce(mm) # layer normalization norm_output, residual_output = self.norm(all_reduce, residual) return norm_output, residual_output def ops_in_model_before(self): return [torch.ops.vllm.all_reduce.default] def ops_in_model_after(self): return [ torch.ops.vllm.reduce_scatter.default, torch.ops.vllm.all_gather.default ] def ops_in_model(self): return [torch.ops._C.fused_add_rms_norm.default] class TestQuantModel(torch.nn.Module): def __init__(self, hidden_size=16, intermediate_size=32, vllm_config: VllmConfig = None): super().__init__() self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.vllm_config = vllm_config self.gate_proj = torch.nn.Parameter(torch.empty( (intermediate_size, hidden_size)), requires_grad=False) self.norm = RMSNorm(intermediate_size, 1e-05) # Initialize weights torch.nn.init.normal_(self.gate_proj, std=0.02) self.fp8_linear = Fp8LinearOp(cutlass_fp8_supported=True, use_per_token_if_dynamic=False) self.scale = torch.rand(1, dtype=torch.float32) # Create a weight that is compatible with torch._scaled_mm, # which expects a column-major layout. self.w = torch.rand(hidden_size, intermediate_size).to(dtype=FP8_DTYPE).t() self.wscale = torch.rand(1, dtype=torch.float32) def forward(self, hidden_states, residual): """ Forward pass implementing the operations in the FX graph Args: hidden_states: Input tensor residual: Residual tensor from previous layer Returns: Tuple containing the output tensor """ # Reshape input view = hidden_states.reshape(-1, self.hidden_size) #matrix multiplication permute = self.gate_proj.permute(1, 0) mm = torch.mm(view, permute) # Tensor parallel all-reduce all_reduce = tensor_model_parallel_all_reduce(mm) # layer normalization norm_output, residual_output = self.norm(all_reduce, residual) # for static input quantization # self.fp8_linear is initialized with use_per_token_if_dynamic=False fp8_linear_result = self.fp8_linear.apply(norm_output, self.w, self.wscale, input_scale=self.scale.to( norm_output.device)) return fp8_linear_result, residual_output def ops_in_model_before(self): ops_to_remove = [torch.ops.vllm.all_reduce.default ] # Always removed by SP # The following are only removed if fusion happens if self.vllm_config and self.vllm_config.compilation_config \ .pass_config.enable_fusion: ops_to_remove.extend([ torch.ops._C.fused_add_rms_norm.default, torch.ops._C.static_scaled_fp8_quant.default, ]) return ops_to_remove def ops_in_model_after(self): ops_to_add = [ torch.ops.vllm.reduce_scatter.default, torch.ops.vllm.all_gather.default ] # The following is only added if fusion happens if self.vllm_config and self.vllm_config.compilation_config \ .pass_config.enable_fusion: ops_to_add.append( torch.ops._C.fused_add_rms_norm_static_fp8_quant.default) return ops_to_add def ops_in_model(self): if self.vllm_config and self.vllm_config.compilation_config \ .pass_config.enable_fusion: # If fusion happens, the fused op is the one # we check for (de)functionalization return [torch.ops._C.fused_add_rms_norm_static_fp8_quant.default ] # noqa: E501 else: # If no fusion, the original ops are checked return [ torch.ops._C.fused_add_rms_norm.default, # TODO functionalization pass does not handle this yet # torch.ops._C.static_scaled_fp8_quant.default, ] @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize("test_model_cls", [TestModel, TestQuantModel]) @pytest.mark.parametrize("batch_size", [8]) @pytest.mark.parametrize("seq_len", [16]) @pytest.mark.parametrize("hidden_size", [16]) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("enable_fusion", [True, False]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA") def test_sequence_parallelism_pass(test_model_cls: type[torch.nn.Module], batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype, enable_fusion: bool): num_processes = 2 def run_torch_spawn(fn, nprocs): # need to use torch.mp.spawn otherwise will have problems with # torch.distributed and cuda torch.multiprocessing.spawn(fn, args=(num_processes, test_model_cls, batch_size, seq_len, hidden_size, dtype, enable_fusion), nprocs=nprocs) run_torch_spawn(sequence_parallelism_pass_on_test_model, num_processes) def sequence_parallelism_pass_on_test_model( local_rank: int, world_size: int, test_model_cls: type[torch.nn.Module], batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype, enable_fusion: bool): current_platform.seed_everything(0) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) torch.set_default_device(device) torch.set_default_dtype(dtype) update_environment_variables({ 'RANK': str(local_rank), 'LOCAL_RANK': str(local_rank), 'WORLD_SIZE': str(world_size), 'MASTER_ADDR': 'localhost', 'MASTER_PORT': '12345', }) # initialize distributed init_distributed_environment() initialize_model_parallel(tensor_model_parallel_size=world_size) # configure vllm config for SequenceParallelismPass vllm_config = VllmConfig() vllm_config.compilation_config = CompilationConfig(pass_config=PassConfig( enable_sequence_parallelism=True, enable_fusion=enable_fusion, enable_noop=True)) # NoOp needed for fusion vllm_config.device_config = DeviceConfig(device=torch.device("cuda")) # this is a fake model name to construct the model config # in the vllm_config, it's not really used. model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e" vllm_config.model_config = ModelConfig(model=model_name, task="auto", tokenizer=model_name, tokenizer_mode="auto", trust_remote_code=True, dtype=dtype, seed=42) sequence_parallelism_pass = SequenceParallelismPass(vllm_config) noop_pass = NoOpEliminationPass(vllm_config) func_pass = FixFunctionalizationPass(vllm_config) passes_for_backend = [noop_pass, sequence_parallelism_pass] if enable_fusion: fusion_pass = FusionPass.instance(vllm_config) passes_for_backend.append(fusion_pass) backend_no_func = TestBackend(*passes_for_backend) backend_func = TestBackend(*passes_for_backend, func_pass) model = test_model_cls(hidden_size, hidden_size * 2, vllm_config=vllm_config) hidden_states = torch.randn((batch_size * seq_len, hidden_size), dtype=dtype) residual = torch.randn((batch_size * seq_len, hidden_size), dtype=dtype) compiled_model_no_func = torch.compile(model, backend=backend_no_func) compiled_model_no_func(hidden_states, residual) compiled_model_func = torch.compile(model, backend=backend_func) compiled_model_func(hidden_states, residual) # In pre-nodes, all reduce should be there, # reduce scatter and all gather should not backend_no_func.check_before_ops(model.ops_in_model_before()) # In post-nodes, reduce scatter and all gather should be there, # all reduce should not backend_no_func.check_after_ops(model.ops_in_model_after()) # check if the functionalization pass is applied for op in model.ops_in_model(): find_auto_fn(backend_no_func.graph_post_pass.nodes, op) assert find_auto_fn_maybe(backend_func.graph_post_pass.nodes, op) is None # noqa: E501 # make sure the ops were all de-functionalized found = dict() for node in backend_func.graph_post_pass.nodes: for op in model.ops_in_model(): if is_func(node, op): found[op] = True assert all(found[op] for op in model.ops_in_model())