# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import random import pytest import ray import torch import torch.distributed as dist from vllm.distributed.communication_op import ( # noqa tensor_model_parallel_all_reduce) from vllm.distributed.parallel_state import (get_tensor_model_parallel_group, get_tp_group, graph_capture) from vllm.platforms import current_platform from ..utils import (ensure_model_parallel_initialized, init_test_distributed_environment, multi_process_parallel) torch.manual_seed(42) random.seed(44) # Size over 8MB is sufficient for custom quick allreduce. test_sizes = [ random.randint(8 * 1024 * 1024, 10 * 1024 * 1024) for _ in range(8) ] for i, v in enumerate(test_sizes): test_sizes[i] -= v % 8 @ray.remote(num_gpus=1, max_calls=1) def graph_quickreduce( monkeypatch: pytest.MonkeyPatch, tp_size, pp_size, rank, distributed_init_port, ): with monkeypatch.context() as m: m.delenv("CUDA_VISIBLE_DEVICES", raising=False) device = torch.device(f"cuda:{rank}") torch.cuda.set_device(device) init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port) ensure_model_parallel_initialized(tp_size, pp_size) group = get_tensor_model_parallel_group().device_group # A small all_reduce for warmup. # this is needed because device communicators might be created lazily # (e.g. NCCL). This will ensure that the communicator is initialized # before any communication happens, so that this group can be used for # graph capture immediately. data = torch.zeros(1) data = data.to(device=device) torch.distributed.all_reduce(data, group=group) torch.cuda.synchronize() del data # we use the first group to communicate once # and the second group to communicate twice # and so on # this is used to demonstrate that each group can # communicate independently num_communication = rank // tp_size + 1 for sz in test_sizes: for dtype in [torch.float16, torch.bfloat16]: with graph_capture(device=device) as graph_capture_context: inp1 = torch.randint(1, 23, (sz, ), dtype=dtype, device=torch.cuda.current_device()) inp2 = torch.randint(-23, 1, (sz, ), dtype=dtype, device=torch.cuda.current_device()) torch.cuda.synchronize() graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph, stream=graph_capture_context.stream): for _ in range(num_communication): out1 = tensor_model_parallel_all_reduce(inp1) dist.all_reduce(inp1, group=group) out2 = tensor_model_parallel_all_reduce(inp2) dist.all_reduce(inp2, group=group) graph.replay() torch.testing.assert_close(out1, inp1, atol=2.5, rtol=0.1) torch.testing.assert_close(out2, inp2, atol=2.5, rtol=0.1) @ray.remote(num_gpus=1, max_calls=1) def eager_quickreduce( monkeypatch: pytest.MonkeyPatch, tp_size, pp_size, rank, distributed_init_port, ): with monkeypatch.context() as m: m.delenv("CUDA_VISIBLE_DEVICES", raising=False) device = torch.device(f"cuda:{rank}") torch.cuda.set_device(device) init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port) # Size over 8MB is sufficient for custom quick allreduce. sz = 16 * 1024 * 1024 fa = get_tp_group().device_communicator.qr_comm inp = torch.tensor([1.0 * ((i) % 23) for i in range(sz)], dtype=torch.float16, device=device) out = fa.quick_all_reduce(inp) torch.testing.assert_close(out, inp * tp_size, atol=2.5, rtol=0.1) inp = torch.tensor([1.0 * ((i) % 23) for i in range(sz)], dtype=torch.bfloat16, device=device) out = fa.quick_all_reduce(inp) torch.testing.assert_close(out, inp * tp_size, atol=2.5, rtol=0.1) @pytest.mark.skipif(not current_platform.is_rocm(), reason="only test quick allreduce for rocm") @pytest.mark.parametrize("quant_mode", ["FP", "INT8", "INT6", "INT4"]) @pytest.mark.parametrize("tp_size", [2]) @pytest.mark.parametrize("pipeline_parallel_size", [1, 2]) @pytest.mark.parametrize("test_target", [graph_quickreduce, eager_quickreduce]) def test_custom_quick_allreduce(monkeypatch: pytest.MonkeyPatch, tp_size, pipeline_parallel_size, test_target, quant_mode): world_size = tp_size * pipeline_parallel_size if world_size > torch.cuda.device_count(): pytest.skip("Not enough GPUs to run the test.") monkeypatch.setenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", quant_mode) multi_process_parallel(monkeypatch, tp_size, pipeline_parallel_size, test_target)