# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from typing import Optional import pytest import torch from vllm.multimodal.image import rescale_image_size from ...conftest import IMAGE_ASSETS, ImageTestAssets, VllmRunner from ..utils import check_logprobs_close HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "<|im_start|>User\n\nWhat's the content in the center of the image?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 "cherry_blossom": "<|im_start|>User\n\nWhat is the season?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 }) def run_awq_test( vllm_runner: type[VllmRunner], image_assets: ImageTestAssets, source_model: str, quant_model: str, *, size_factors: list[float], dtype: str, max_tokens: int, num_logprobs: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # NOTE: take care of the order. run vLLM first, and then run HF. # vLLM needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with vllm_runner(source_model, max_model_len=4096, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as vllm_model: source_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] with vllm_runner(quant_model, quantization="awq", max_model_len=4096, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as vllm_model: quant_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] for source_outputs, quant_outputs in zip(source_outputs_per_image, quant_outputs_per_image): # TODO: Check whether using original CLIPVisionModel can improve # consistency against HF check_logprobs_close( outputs_0_lst=source_outputs, outputs_1_lst=quant_outputs, name_0="source", name_1="awq", ) @pytest.mark.parametrize( ("source_model", "quant_model"), [("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")], ) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_awq_models(vllm_runner, image_assets, source_model, quant_model, size_factors, dtype, max_tokens, num_logprobs, monkeypatch) -> None: # Test V1: this test hangs during setup on single-scale input. # TODO: fixure out why and re-enable this on V1. monkeypatch.setenv("VLLM_USE_V1", "0") run_awq_test( vllm_runner, image_assets, source_model, quant_model, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=1, )