# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ This module defines a framework for sampling benchmark requests from various datasets. Each dataset subclass of BenchmarkDataset must implement sample generation. Supported dataset types include: - ShareGPT - Random (synthetic) - Sonnet - BurstGPT - HuggingFace - VisionArena """ import base64 import io import json import logging import random from abc import ABC, abstractmethod from collections.abc import Mapping from dataclasses import dataclass from functools import cache from io import BytesIO from typing import Any, Callable, Optional, Union import numpy as np import pandas as pd from datasets import load_dataset from PIL import Image from transformers import PreTrainedTokenizerBase from vllm.lora.request import LoRARequest from vllm.lora.utils import get_adapter_absolute_path from vllm.multimodal import MultiModalDataDict from vllm.multimodal.image import convert_image_mode from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # Data Classes # ----------------------------------------------------------------------------- @dataclass class SampleRequest: """ Represents a single inference request for benchmarking. """ prompt: Union[str, Any] prompt_len: int expected_output_len: int multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None lora_request: Optional[LoRARequest] = None # ----------------------------------------------------------------------------- # Benchmark Dataset Base Class # ----------------------------------------------------------------------------- class BenchmarkDataset(ABC): DEFAULT_SEED = 0 IS_MULTIMODAL = False def __init__( self, dataset_path: Optional[str] = None, random_seed: int = DEFAULT_SEED, ) -> None: """ Initialize the BenchmarkDataset with an optional dataset path and random seed. Args: dataset_path (Optional[str]): Path to the dataset. If None, it indicates that a default or random dataset might be used. random_seed (int): Seed value for reproducible shuffling or sampling. Defaults to DEFAULT_SEED. """ self.dataset_path = dataset_path # Set the random seed, ensuring that a None value is replaced with the # default seed. self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED self.data = None def apply_multimodal_chat_transformation( self, prompt: str, mm_content: Optional[MultiModalDataDict] = None ) -> list[dict]: """ Transform a prompt and optional multimodal content into a chat format. This method is used for chat models that expect a specific conversation format. """ content = [{"text": prompt, "type": "text"}] if mm_content is not None: content.append(mm_content) return [{"role": "user", "content": content}] def load_data(self) -> None: """ Load data from the dataset path into self.data. This method must be overridden by subclasses since the method to load data will vary depending on the dataset format and source. Raises: NotImplementedError: If a subclass does not implement this method. """ # TODO (jenniferzhao): add support for downloading data raise NotImplementedError("load_data must be implemented in subclasses.") def get_random_lora_request( self, tokenizer: PreTrainedTokenizerBase, max_loras: Optional[int] = None, lora_path: Optional[str] = None, ) -> tuple[Optional[LoRARequest], AnyTokenizer]: """ Optionally select a random LoRA request and return its associated tokenizer. This method is used when LoRA parameters are provided. It randomly selects a LoRA based on max_loras and retrieves a cached tokenizer for that LoRA if available. Otherwise, it returns the base tokenizer. Args: tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no LoRA is selected. max_loras (Optional[int]): The maximum number of LoRAs available. If None, LoRA is not used. lora_path (Optional[str]): Path to the LoRA parameters on disk. If None, LoRA is not used. Returns: tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first element is a LoRARequest (or None if not applicable) and the second element is the tokenizer associated with the LoRA request (or the base tokenizer). """ if max_loras is None or lora_path is None: return None, tokenizer # Generate a random LoRA ID in the range [1, max_loras]. lora_id = random.randint(1, max_loras) lora_request = LoRARequest( lora_name=str(lora_id), lora_int_id=lora_id, lora_path=lora_path_on_disk(lora_path), ) if lora_id not in lora_tokenizer_cache: lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request) # Return lora_request and the cached tokenizer if available; otherwise, # return the base tokenizer return lora_request, lora_tokenizer_cache[lora_id] or tokenizer @abstractmethod def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int ) -> list[SampleRequest]: """ Abstract method to generate sample requests from the dataset. Subclasses must override this method to implement dataset-specific logic for generating a list of SampleRequest objects. Args: tokenizer (PreTrainedTokenizerBase): The tokenizer to be used for processing the dataset's text. num_requests (int): The number of sample requests to generate. Returns: list[SampleRequest]: A list of sample requests generated from the dataset. """ raise NotImplementedError("sample must be implemented in subclasses.") def maybe_oversample_requests( self, requests: list[SampleRequest], num_requests: int ) -> None: """ Oversamples the list of requests if its size is less than the desired number. Args: requests (List[SampleRequest]): The current list of sampled requests. num_requests (int): The target number of requests. """ if len(requests) < num_requests: random.seed(self.random_seed) additional = random.choices(requests, k=num_requests - len(requests)) requests.extend(additional) logger.info("Oversampled requests to reach %d total samples.", num_requests) # ----------------------------------------------------------------------------- # Utility Functions and Global Caches # ----------------------------------------------------------------------------- def is_valid_sequence( prompt_len: int, output_len: int, min_len: int = 4, max_prompt_len: int = 1024, max_total_len: int = 2048, skip_min_output_len_check: bool = False, ) -> bool: """ Validate a sequence based on prompt and output lengths. Default pruning criteria are copied from the original `sample_hf_requests` and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as from `sample_requests` in benchmark_throughput.py. """ # Check for invalid conditions prompt_too_short = prompt_len < min_len output_too_short = (not skip_min_output_len_check) and (output_len < min_len) prompt_too_long = prompt_len > max_prompt_len combined_too_long = (prompt_len + output_len) > max_total_len # Return True if none of the invalid conditions are met return not ( prompt_too_short or output_too_short or prompt_too_long or combined_too_long ) @cache def lora_path_on_disk(lora_path: str) -> str: return get_adapter_absolute_path(lora_path) # Global cache for LoRA tokenizers. lora_tokenizer_cache: dict[int, AnyTokenizer] = {} def process_image(image: Any) -> Mapping[str, Any]: """ Process a single image input and return a multimedia content dictionary. Supports three input types: 1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key containing raw image data. - Loads the bytes as a PIL.Image.Image. 2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns a dictionary with the image as a base64 data URL. 3. String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL. Raises: ValueError: If the input is not a supported type. """ if isinstance(image, dict) and "bytes" in image: image = Image.open(BytesIO(image["bytes"])) if isinstance(image, Image.Image): image = convert_image_mode(image, "RGB") with io.BytesIO() as image_data: image.save(image_data, format="JPEG") image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8") return { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}, } if isinstance(image, str): image_url = ( image if image.startswith(("http://", "file://")) else f"file://{image}" ) return {"type": "image_url", "image_url": {"url": image_url}} raise ValueError( f"Invalid image input {image}. Must be a PIL.Image.Image" " or str or dictionary with raw image bytes." ) # ----------------------------------------------------------------------------- # Random Dataset Implementation (Synthetic Data) # ----------------------------------------------------------------------------- class RandomDataset(BenchmarkDataset): # Default values copied from benchmark_serving.py for the random dataset. DEFAULT_PREFIX_LEN = 0 DEFAULT_RANGE_RATIO = 0.0 DEFAULT_INPUT_LEN = 1024 DEFAULT_OUTPUT_LEN = 128 def __init__( self, **kwargs, ) -> None: super().__init__(**kwargs) def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, prefix_len: int = DEFAULT_PREFIX_LEN, range_ratio: float = DEFAULT_RANGE_RATIO, input_len: int = DEFAULT_INPUT_LEN, output_len: int = DEFAULT_OUTPUT_LEN, **kwargs, ) -> list[SampleRequest]: # Enforce range_ratio < 1 assert range_ratio < 1.0, ( "random_range_ratio must be < 1.0 to ensure a valid sampling range" ) vocab_size = tokenizer.vocab_size num_special_tokens = tokenizer.num_special_tokens_to_add() real_input_len = input_len - num_special_tokens prefix_token_ids = ( np.random.randint(0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [] ) # New sampling logic: [X * (1 - b), X * (1 + b)] input_low = int(real_input_len * (1 - range_ratio)) input_high = int(real_input_len * (1 + range_ratio)) output_low = int(output_len * (1 - range_ratio)) output_high = int(output_len * (1 + range_ratio)) # Add logging for debugging logger.info("Sampling input_len from [%s, %s]", input_low, input_high) logger.info("Sampling output_len from [%s, %s]", output_low, output_high) input_lens = np.random.randint(input_low, input_high + 1, size=num_requests) output_lens = np.random.randint(output_low, output_high + 1, size=num_requests) offsets = np.random.randint(0, vocab_size, size=num_requests) requests = [] for i in range(num_requests): inner_seq = ( (offsets[i] + i + np.arange(input_lens[i])) % vocab_size ).tolist() token_sequence = prefix_token_ids + inner_seq prompt = tokenizer.decode(token_sequence) # After decoding the prompt we have to encode and decode it again. # This is done because in some cases N consecutive tokens # give a string tokenized into != N number of tokens. # For example for GPT2Tokenizer: # [6880, 6881] -> ['Ġcalls', 'here'] -> # [1650, 939, 486] -> ['Ġcall', 'sh', 'ere'] # To avoid uncontrolled change of the prompt length, # the encoded sequence is truncated before being decode again. re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[ : input_lens[i] ] prompt = tokenizer.decode(re_encoded_sequence) total_input_len = len(re_encoded_sequence) requests.append( SampleRequest( prompt=prompt, prompt_len=total_input_len, expected_output_len=int(output_lens[i]), ) ) return requests # ----------------------------------------------------------------------------- # ShareGPT Dataset Implementation # ----------------------------------------------------------------------------- class ShareGPTDataset(BenchmarkDataset): """ Implements the ShareGPT dataset. Loads data from a JSON file and generates sample requests based on conversation turns. """ def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.load_data() def load_data(self) -> None: if self.dataset_path is None: raise ValueError("dataset_path must be provided for loading data.") with open(self.dataset_path, encoding="utf-8") as f: self.data = json.load(f) # Filter entries with at least two conversation turns. self.data = [ entry for entry in self.data if "conversations" in entry and len(entry["conversations"]) >= 2 ] random.seed(self.random_seed) random.shuffle(self.data) def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, lora_path: Optional[str] = None, max_loras: Optional[int] = None, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, **kwargs, ) -> list: samples: list = [] for entry in self.data: if len(samples) >= num_requests: break prompt, completion = ( entry["conversations"][0]["value"], entry["conversations"][1]["value"], ) lora_request, tokenizer = self.get_random_lora_request( tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path ) prompt_ids = tokenizer(prompt).input_ids completion_ids = tokenizer(completion).input_ids prompt_len = len(prompt_ids) new_output_len = len(completion_ids) if output_len is None else output_len if not is_valid_sequence( prompt_len, new_output_len, skip_min_output_len_check=output_len is not None, ): continue if enable_multimodal_chat: prompt = self.apply_multimodal_chat_transformation(prompt, None) samples.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=new_output_len, lora_request=lora_request, ) ) self.maybe_oversample_requests(samples, num_requests) return samples # ----------------------------------------------------------------------------- # Custom Dataset Implementation # ----------------------------------------------------------------------------- class CustomDataset(BenchmarkDataset): """ Implements the Custom dataset. Loads data from a JSONL file and generates sample requests based on conversation turns. E.g., ``` {"prompt": "What is the capital of India?"} {"prompt": "What is the capital of Iran?"} {"prompt": "What is the capital of China?"} ``` """ def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.load_data() def load_data(self) -> None: if self.dataset_path is None: raise ValueError("dataset_path must be provided for loading data.") # self.data will be a list of dictionaries # e.g., [{"prompt": "What is the capital of India?"}, ...] # This will be the standardized format which load_data() # has to convert into depending on the filetype of dataset_path. # sample() will assume this standardized format of self.data self.data = [] # Load the JSONL file if self.dataset_path.endswith(".jsonl"): jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True) # check if the JSONL file has a 'prompt' column if "prompt" not in jsonl_data.columns: raise ValueError("JSONL file must contain a 'prompt' column.") # Convert each row to a dictionary and append to self.data # This will convert the DataFrame to a list of dictionaries # where each dictionary corresponds to a row in the DataFrame. # This is the standardized format we want for self.data for _, row in jsonl_data.iterrows(): self.data.append(row.to_dict()) else: raise NotImplementedError( "Only JSONL format is supported for CustomDataset." ) random.seed(self.random_seed) random.shuffle(self.data) def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, lora_path: Optional[str] = None, max_loras: Optional[int] = None, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, skip_chat_template: bool = False, **kwargs, ) -> list: sampled_requests = [] for item in self.data: if len(sampled_requests) >= num_requests: break prompt = item["prompt"] # apply template if not skip_chat_template: prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=False, ) prompt_len = len(tokenizer(prompt).input_ids) sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # Sonnet Dataset Implementation # ----------------------------------------------------------------------------- class SonnetDataset(BenchmarkDataset): """ Simplified implementation of the Sonnet dataset. Loads poem lines from a text file and generates sample requests. Default values here copied from `benchmark_serving.py` for the sonnet dataset. """ DEFAULT_PREFIX_LEN = 200 DEFAULT_INPUT_LEN = 550 DEFAULT_OUTPUT_LEN = 150 def __init__( self, **kwargs, ) -> None: super().__init__(**kwargs) self.load_data() def load_data(self) -> None: if not self.dataset_path: raise ValueError("dataset_path must be provided.") with open(self.dataset_path, encoding="utf-8") as f: self.data = f.readlines() def sample( self, tokenizer, num_requests: int, prefix_len: int = DEFAULT_PREFIX_LEN, input_len: int = DEFAULT_INPUT_LEN, output_len: int = DEFAULT_OUTPUT_LEN, return_prompt_formatted: bool = False, **kwargs, ) -> list: # Calculate average token length for a poem line. tokenized_lines = [tokenizer(line).input_ids for line in self.data] avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines) # Build the base prompt. base_prompt = "Pick as many lines as you can from these poem lines:\n" base_msg = [{"role": "user", "content": base_prompt}] base_fmt = tokenizer.apply_chat_template( base_msg, add_generation_prompt=True, tokenize=False ) base_offset = len(tokenizer(base_fmt).input_ids) if input_len <= base_offset: raise ValueError( f"'input_len' must be higher than the base prompt length " f"({base_offset})." ) # Determine how many poem lines to use. num_input_lines = round((input_len - base_offset) / avg_len) num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0) prefix_lines = self.data[:num_prefix_lines] samples = [] while len(samples) < num_requests: extra_lines = random.choices( self.data, k=num_input_lines - num_prefix_lines ) prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}" msg = [{"role": "user", "content": prompt}] prompt_formatted = tokenizer.apply_chat_template( msg, add_generation_prompt=True, tokenize=False ) prompt_len = len(tokenizer(prompt_formatted).input_ids) if prompt_len <= input_len: samples.append( SampleRequest( prompt=prompt_formatted if return_prompt_formatted else prompt, prompt_len=prompt_len, expected_output_len=output_len, ) ) return samples # ----------------------------------------------------------------------------- # BurstGPT Dataset Implementation # ----------------------------------------------------------------------------- class BurstGPTDataset(BenchmarkDataset): """ Implements the BurstGPT dataset. Loads data from a CSV file and generates sample requests based on synthetic prompt generation. Only rows with Model "GPT-4" and positive response tokens are used. """ def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.load_data() def load_data( self, ): if self.dataset_path is None: raise ValueError("dataset_path must be provided for loading data.") df = pd.read_csv(self.dataset_path) # Filter to keep only GPT-4 rows. gpt4_df = df[df["Model"] == "GPT-4"] # Remove failed requests (where Response tokens is 0 or less). gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0] # Sample the desired number of rows. self.data = gpt4_df def _sample_loaded_data(self, num_requests: int) -> list: if num_requests <= len(self.data): data = self.data.sample(n=num_requests, random_state=self.random_seed) else: data = self.data.sample( n=num_requests, random_state=self.random_seed, replace=True, ) # Convert the dataframe to a list of lists. return data.values.tolist() def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, max_loras: Optional[int] = None, lora_path: Optional[str] = None, **kwargs, ) -> list[SampleRequest]: samples = [] data = self._sample_loaded_data(num_requests=num_requests) for i in range(num_requests): input_len = int(data[i][2]) output_len = int(data[i][3]) lora_req, tokenizer = self.get_random_lora_request( tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path ) vocab_size = tokenizer.vocab_size # Generate a synthetic prompt: a list of token IDs computed as (i + # j) modulo vocab_size. token_ids = [(i + j) % vocab_size for j in range(input_len)] prompt = tokenizer.decode(token_ids) samples.append( SampleRequest( prompt=prompt, prompt_len=input_len, expected_output_len=output_len, lora_request=lora_req, ) ) return samples # ----------------------------------------------------------------------------- # HuggingFace Dataset Base Implementation # ----------------------------------------------------------------------------- class HuggingFaceDataset(BenchmarkDataset): """Base class for datasets hosted on HuggingFace.""" SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set() def __init__( self, dataset_path: str, dataset_split: str, dataset_subset: Optional[str] = None, **kwargs, ) -> None: super().__init__(dataset_path=dataset_path, **kwargs) self.dataset_split = dataset_split self.dataset_subset = dataset_subset self.load_data() def load_data(self) -> None: """Load data from HuggingFace datasets.""" self.data = load_dataset( self.dataset_path, name=self.dataset_subset, split=self.dataset_split, streaming=True, ) self.data = self.data.shuffle(seed=self.random_seed) # ----------------------------------------------------------------------------- # Conversation Dataset Implementation # ----------------------------------------------------------------------------- class ConversationDataset(HuggingFaceDataset): """Dataset for conversation data with multimodal support.""" SUPPORTED_DATASET_PATHS = { "lmms-lab/LLaVA-OneVision-Data", "Aeala/ShareGPT_Vicuna_unfiltered", } IS_MULTIMODAL = True def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, **kwargs, ) -> list: # Filter examples with at least 2 conversations filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2) sampled_requests = [] dynamic_output = output_len is None for item in filtered_data: if len(sampled_requests) >= num_requests: break conv = item["conversations"] prompt, completion = conv[0]["value"], conv[1]["value"] prompt_ids = tokenizer(prompt).input_ids completion_ids = tokenizer(completion).input_ids prompt_len = len(prompt_ids) completion_len = len(completion_ids) output_len = completion_len if dynamic_output else output_len assert isinstance(output_len, int) and output_len > 0 if dynamic_output and not is_valid_sequence(prompt_len, completion_len): continue mm_content = process_image(item["image"]) if "image" in item else None if enable_multimodal_chat: # Note: when chat is enabled the request prompt_len is no longer # accurate and we will be using request output to count the # actual prompt len and output len prompt = self.apply_multimodal_chat_transformation(prompt, mm_content) sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, multi_modal_data=mm_content, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # Vision Arena Dataset Implementation # ----------------------------------------------------------------------------- class VisionArenaDataset(HuggingFaceDataset): """ Vision Arena Dataset. """ DEFAULT_OUTPUT_LEN = 128 SUPPORTED_DATASET_PATHS = { "lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"], "lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"], } IS_MULTIMODAL = True def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, **kwargs, ) -> list: output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN sampled_requests = [] for item in self.data: if len(sampled_requests) >= num_requests: break parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path) if parser_fn is None: raise ValueError(f"Unsupported dataset path: {self.dataset_path}") prompt = parser_fn(item) mm_content = process_image(item["images"][0]) prompt_len = len(tokenizer(prompt).input_ids) if enable_multimodal_chat: # Note: when chat is enabled the request prompt_len is no longer # accurate and we will be using request output to count the # actual prompt len prompt = self.apply_multimodal_chat_transformation(prompt, mm_content) sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, multi_modal_data=mm_content, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # Instruct Coder Dataset Implementation # ----------------------------------------------------------------------------- class InstructCoderDataset(HuggingFaceDataset): """ InstructCoder Dataset. https://huggingface.co/datasets/likaixin/InstructCoder InstructCoder is the dataset designed for general code editing. It consists of 114,239 instruction-input-output triplets, and covers multiple distinct code editing scenario. """ DEFAULT_OUTPUT_LEN = 200 # this is the average default output length SUPPORTED_DATASET_PATHS = { "likaixin/InstructCoder", } def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, **kwargs, ) -> list: output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN sampled_requests = [] for item in self.data: if len(sampled_requests) >= num_requests: break prompt = f"{item['input']}\n\n{item['instruction']} Just output \ the code, do not include any explanation." # apply template prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=False, ) prompt_len = len(tokenizer(prompt).input_ids) sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # MT-Bench Dataset Implementation # ----------------------------------------------------------------------------- class MTBenchDataset(HuggingFaceDataset): """ MT-Bench Dataset. https://huggingface.co/datasets/philschmid/mt-bench We create a single turn dataset for MT-Bench. This is similar to Spec decoding benchmark setup in vLLM https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18 """ # noqa: E501 DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM SUPPORTED_DATASET_PATHS = { "philschmid/mt-bench", } def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, enable_multimodal_chat: bool = False, **kwargs, ) -> list: output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN sampled_requests = [] for item in self.data: if len(sampled_requests) >= num_requests: break prompt = item["turns"][0] # apply template prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=False, ) prompt_len = len(tokenizer(prompt).input_ids) sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # AIMO Dataset Implementation # ----------------------------------------------------------------------------- class AIMODataset(HuggingFaceDataset): """ Dataset class for processing a AIMO dataset with reasoning questions. """ SUPPORTED_DATASET_PATHS = { "AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5", "AI-MO/NuminaMath-CoT", } def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, **kwargs, ) -> list: sampled_requests = [] dynamic_output = output_len is None for item in self.data: if len(sampled_requests) >= num_requests: break prompt, completion = item["problem"], item["solution"] prompt_ids = tokenizer(prompt).input_ids completion_ids = tokenizer(completion).input_ids prompt_len = len(prompt_ids) completion_len = len(completion_ids) output_len = completion_len if dynamic_output else output_len assert isinstance(output_len, int) and output_len > 0 if dynamic_output and not is_valid_sequence( prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000 ): continue sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, multi_modal_data=None, ) ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests # ----------------------------------------------------------------------------- # Next Edit Prediction Dataset Implementation # ----------------------------------------------------------------------------- zeta_prompt = """### Instruction: You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location. ### User Edits: {} ### User Excerpt: {} ### Response: """ # noqa: E501 def _format_zeta_prompt( sample: dict, original_start_marker: str = "<|editable_region_start|>" ) -> dict: """Format the zeta prompt for the Next Edit Prediction (NEP) dataset. This function formats examples from the NEP dataset into prompts and expected outputs. It could be further extended to support more NEP datasets. Args: sample: The dataset sample containing events, inputs, and outputs. original_start_marker: The marker indicating the start of the editable region. Defaults to "<|editable_region_start|>". Returns: A dictionary with the formatted prompts and expected outputs. """ events = sample["events"] input = sample["input"] output = sample["output"] prompt = zeta_prompt.format(events, input) # following the original implementation, extract the focused region # from the raw output output_start_index = output.find(original_start_marker) output_focused_region = output[output_start_index:] expected_output = output_focused_region return {"prompt": prompt, "expected_output": expected_output} class NextEditPredictionDataset(HuggingFaceDataset): """ Dataset class for processing a Next Edit Prediction dataset. """ SUPPORTED_DATASET_PATHS = { "zed-industries/zeta", } MAPPING_PROMPT_FUNCS = { "zed-industries/zeta": _format_zeta_prompt, } def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs): formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path) if formatting_prompt_func is None: raise ValueError(f"Unsupported dataset path: {self.dataset_path}") samples = [] for sample in self.data: sample = formatting_prompt_func(sample) samples.append( SampleRequest( prompt=sample["prompt"], prompt_len=len(tokenizer(sample["prompt"]).input_ids), expected_output_len=len( tokenizer(sample["expected_output"]).input_ids ), ) ) if len(samples) >= num_requests: break self.maybe_oversample_requests(samples, num_requests) return samples # ----------------------------------------------------------------------------- # ASR Dataset Implementation # ----------------------------------------------------------------------------- class ASRDataset(HuggingFaceDataset): """ Dataset class for processing a ASR dataset for transcription. Tested on the following set: +----------------+----------------------------------------+--------------------------+-----------------------------+ | Dataset | Domain | Speaking Style | hf-subset | +----------------+----------------------------------------+--------------------------+-----------------------------+ | TED-LIUM | TED talks | Oratory | release1, release2, release3| | | | | release3-speaker-adaptation | | VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... | | LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" | | GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test | | SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test | | AMI | Meetings | Spontaneous | ihm, sdm | +----------------+----------------------------------------+--------------------------+-----------------------------+ """ # noqa: E501 SUPPORTED_DATASET_PATHS = { "openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium", "edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech", } DEFAULT_OUTPUT_LEN = 128 IS_MULTIMODAL = True # TODO Whisper-specific. Abstract interface when more models are supported. TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>" skip_long_audios: bool = True def sample( self, tokenizer: PreTrainedTokenizerBase, num_requests: int, output_len: Optional[int] = None, **kwargs, ) -> list: import librosa output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN prompt = ASRDataset.TRANSCRIPTION_PREAMBLE prompt_len = len(tokenizer(prompt).input_ids) sampled_requests = [] skipped = 0 for item in self.data: if len(sampled_requests) >= num_requests: break audio = item["audio"] y, sr = audio["array"], audio["sampling_rate"] duration_s = librosa.get_duration(y=y, sr=sr) # Whisper max supported duration if self.skip_long_audios and duration_s > 30: skipped += 1 continue mm_content = {"audio": (y, sr)} sampled_requests.append( SampleRequest( prompt=prompt, prompt_len=prompt_len, expected_output_len=output_len, multi_modal_data=mm_content, ) ) if skipped: logger.warning( "%d samples discarded from dataset due to" " their length being greater than" " what Whisper supports.", skipped, ) self.maybe_oversample_requests(sampled_requests, num_requests) return sampled_requests