# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import argparse import json import os from transformers import AutoTokenizer from vllm import LLM, SamplingParams from vllm.v1.metrics.reader import Counter, Vector def load_prompts(dataset_path, num_prompts): if os.path.exists(dataset_path): prompts = [] try: with open(dataset_path) as f: for line in f: data = json.loads(line) prompts.append(data["turns"][0]) except Exception as e: print(f"Error reading dataset: {e}") return [] else: prompts = ["The future of AI is", "The president of the United States is"] return prompts[:num_prompts] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, default="./examples/data/gsm8k.jsonl", help="downloaded from the eagle repo " "https://github.com/SafeAILab/EAGLE/blob/main/eagle/data/", ) parser.add_argument( "--method", type=str, default="eagle", choices=["eagle", "eagle3"] ) parser.add_argument("--max_num_seqs", type=int, default=8) parser.add_argument("--num_prompts", type=int, default=80) parser.add_argument("--num_spec_tokens", type=int, default=2) parser.add_argument("--tp", type=int, default=1) parser.add_argument("--draft_tp", type=int, default=1) parser.add_argument("--enforce_eager", action="store_true") parser.add_argument("--enable_chunked_prefill", action="store_true") parser.add_argument("--max_num_batched_tokens", type=int, default=2048) parser.add_argument("--temp", type=float, default=0) return parser.parse_args() def main(): args = parse_args() model_dir = "meta-llama/Llama-3.1-8B-Instruct" if args.method == "eagle": eagle_dir = "yuhuili/EAGLE-LLaMA3.1-Instruct-8B" elif args.method == "eagle3": eagle_dir = "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B" else: raise ValueError(f"unknown method: {args.method}") max_model_len = 2048 tokenizer = AutoTokenizer.from_pretrained(model_dir) prompts = load_prompts(args.dataset, args.num_prompts) prompt_ids = [ tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True ) for prompt in prompts ] llm = LLM( model=model_dir, trust_remote_code=True, tensor_parallel_size=args.tp, enable_chunked_prefill=args.enable_chunked_prefill, max_num_batched_tokens=args.max_num_batched_tokens, enforce_eager=args.enforce_eager, max_model_len=max_model_len, max_num_seqs=args.max_num_seqs, gpu_memory_utilization=0.8, speculative_config={ "method": args.method, "model": eagle_dir, "num_speculative_tokens": args.num_spec_tokens, "draft_tensor_parallel_size": args.draft_tp, "max_model_len": max_model_len, }, disable_log_stats=False, ) sampling_params = SamplingParams(temperature=args.temp, max_tokens=256) outputs = llm.generate(prompt_token_ids=prompt_ids, sampling_params=sampling_params) # print the generated text for output in outputs: print("-" * 50) print(f"prompt: {output.prompt}") print(f"generated text: {output.outputs[0].text}") print("-" * 50) try: metrics = llm.get_metrics() except AssertionError: print("Metrics are not supported in the V0 engine.") return num_drafts = num_accepted = 0 acceptance_counts = [0] * args.num_spec_tokens for metric in metrics: if metric.name == "vllm:spec_decode_num_drafts": assert isinstance(metric, Counter) num_drafts += metric.value elif metric.name == "vllm:spec_decode_num_accepted_tokens": assert isinstance(metric, Counter) num_accepted += metric.value elif metric.name == "vllm:spec_decode_num_accepted_tokens_per_pos": assert isinstance(metric, Vector) for pos in range(len(metric.values)): acceptance_counts[pos] += metric.values[pos] print("-" * 50) print(f"mean acceptance length: {1 + (num_accepted / num_drafts):.2f}") print("-" * 50) # print acceptance at each token position for i in range(len(acceptance_counts)): print(f"acceptance at token {i}:{acceptance_counts[i] / num_drafts:.2f}") if __name__ == "__main__": print( "[WARNING] Use examples/offline_inference/spec_decode.py" " instead of this script." ) main()