# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # ruff: noqa import asyncio import hashlib import json import pickle import socket from collections.abc import AsyncIterator from unittest.mock import patch import pytest import torch import zmq from vllm_test_utils.monitor import monitor from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config from vllm.utils import (CacheInfo, FlexibleArgumentParser, LRUCache, MemorySnapshot, PlaceholderModule, StoreBoolean, bind_kv_cache, common_broadcastable_dtype, deprecate_kwargs, get_open_port, is_lossless_cast, make_zmq_path, make_zmq_socket, memory_profiling, merge_async_iterators, sha256, split_zmq_path, supports_kw, swap_dict_values) from .utils import create_new_process_for_each_test, error_on_warning @pytest.mark.asyncio async def test_merge_async_iterators(): async def mock_async_iterator(idx: int): try: while True: yield f"item from iterator {idx}" await asyncio.sleep(0.1) except asyncio.CancelledError: print(f"iterator {idx} cancelled") iterators = [mock_async_iterator(i) for i in range(3)] merged_iterator = merge_async_iterators(*iterators) async def stream_output(generator: AsyncIterator[tuple[int, str]]): async for idx, output in generator: print(f"idx: {idx}, output: {output}") task = asyncio.create_task(stream_output(merged_iterator)) await asyncio.sleep(0.5) task.cancel() with pytest.raises(asyncio.CancelledError): await task for iterator in iterators: try: # Can use anext() in python >= 3.10 await asyncio.wait_for(iterator.__anext__(), 1) except StopAsyncIteration: # All iterators should be cancelled and print this message. print("Iterator was cancelled normally") except (Exception, asyncio.CancelledError) as e: raise AssertionError() from e def test_deprecate_kwargs_always(): @deprecate_kwargs("old_arg", is_deprecated=True) def dummy(*, old_arg: object = None, new_arg: object = None): pass with pytest.warns(DeprecationWarning, match="'old_arg'"): dummy(old_arg=1) with error_on_warning(DeprecationWarning): dummy(new_arg=1) def test_deprecate_kwargs_never(): @deprecate_kwargs("old_arg", is_deprecated=False) def dummy(*, old_arg: object = None, new_arg: object = None): pass with error_on_warning(DeprecationWarning): dummy(old_arg=1) with error_on_warning(DeprecationWarning): dummy(new_arg=1) def test_deprecate_kwargs_dynamic(): is_deprecated = True @deprecate_kwargs("old_arg", is_deprecated=lambda: is_deprecated) def dummy(*, old_arg: object = None, new_arg: object = None): pass with pytest.warns(DeprecationWarning, match="'old_arg'"): dummy(old_arg=1) with error_on_warning(DeprecationWarning): dummy(new_arg=1) is_deprecated = False with error_on_warning(DeprecationWarning): dummy(old_arg=1) with error_on_warning(DeprecationWarning): dummy(new_arg=1) def test_deprecate_kwargs_additional_message(): @deprecate_kwargs("old_arg", is_deprecated=True, additional_message="abcd") def dummy(*, old_arg: object = None, new_arg: object = None): pass with pytest.warns(DeprecationWarning, match="abcd"): dummy(old_arg=1) def test_get_open_port(monkeypatch: pytest.MonkeyPatch): with monkeypatch.context() as m: m.setenv("VLLM_PORT", "5678") # make sure we can get multiple ports, even if the env var is set with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1: s1.bind(("localhost", get_open_port())) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2: s2.bind(("localhost", get_open_port())) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s3: s3.bind(("localhost", get_open_port())) # Tests for FlexibleArgumentParser @pytest.fixture def parser(): parser = FlexibleArgumentParser() parser.add_argument('--image-input-type', choices=['pixel_values', 'image_features']) parser.add_argument('--model-name') parser.add_argument('--batch-size', type=int) parser.add_argument('--enable-feature', action='store_true') parser.add_argument('--hf-overrides', type=json.loads) return parser @pytest.fixture def parser_with_config(): parser = FlexibleArgumentParser() parser.add_argument('serve') parser.add_argument('model_tag', nargs='?') parser.add_argument('--model', type=str) parser.add_argument('--served-model-name', type=str) parser.add_argument('--config', type=str) parser.add_argument('--port', type=int) parser.add_argument('--tensor-parallel-size', type=int) parser.add_argument('--trust-remote-code', action='store_true') parser.add_argument('--multi-step-stream-outputs', action=StoreBoolean) return parser def test_underscore_to_dash(parser): args = parser.parse_args(['--image_input_type', 'pixel_values']) assert args.image_input_type == 'pixel_values' def test_mixed_usage(parser): args = parser.parse_args([ '--image_input_type', 'image_features', '--model-name', 'facebook/opt-125m' ]) assert args.image_input_type == 'image_features' assert args.model_name == 'facebook/opt-125m' def test_with_equals_sign(parser): args = parser.parse_args( ['--image_input_type=pixel_values', '--model-name=facebook/opt-125m']) assert args.image_input_type == 'pixel_values' assert args.model_name == 'facebook/opt-125m' def test_with_int_value(parser): args = parser.parse_args(['--batch_size', '32']) assert args.batch_size == 32 args = parser.parse_args(['--batch-size', '32']) assert args.batch_size == 32 def test_with_bool_flag(parser): args = parser.parse_args(['--enable_feature']) assert args.enable_feature is True args = parser.parse_args(['--enable-feature']) assert args.enable_feature is True def test_invalid_choice(parser): with pytest.raises(SystemExit): parser.parse_args(['--image_input_type', 'invalid_choice']) def test_missing_required_argument(parser): parser.add_argument('--required-arg', required=True) with pytest.raises(SystemExit): parser.parse_args([]) def test_cli_override_to_config(parser_with_config, cli_config_file): args = parser_with_config.parse_args([ 'serve', 'mymodel', '--config', cli_config_file, '--tensor-parallel-size', '3' ]) assert args.tensor_parallel_size == 3 args = parser_with_config.parse_args([ 'serve', 'mymodel', '--tensor-parallel-size', '3', '--config', cli_config_file ]) assert args.tensor_parallel_size == 3 assert args.port == 12312 args = parser_with_config.parse_args([ 'serve', 'mymodel', '--tensor-parallel-size', '3', '--config', cli_config_file, '--port', '666' ]) assert args.tensor_parallel_size == 3 assert args.port == 666 def test_config_args(parser_with_config, cli_config_file): args = parser_with_config.parse_args( ['serve', 'mymodel', '--config', cli_config_file]) assert args.tensor_parallel_size == 2 assert args.trust_remote_code assert not args.multi_step_stream_outputs def test_config_file(parser_with_config): with pytest.raises(FileNotFoundError): parser_with_config.parse_args( ['serve', 'mymodel', '--config', 'test_config.yml']) with pytest.raises(ValueError): parser_with_config.parse_args( ['serve', 'mymodel', '--config', './data/test_config.json']) with pytest.raises(ValueError): parser_with_config.parse_args([ 'serve', 'mymodel', '--tensor-parallel-size', '3', '--config', '--batch-size', '32' ]) def test_no_model_tag(parser_with_config, cli_config_file): with pytest.raises(ValueError): parser_with_config.parse_args(['serve', '--config', cli_config_file]) def test_dict_args(parser): args = [ "--model-name=something.something", "--hf-overrides.key1", "val1", # Test nesting "--hf-overrides.key2.key3", "val2", "--hf-overrides.key2.key4", "val3", # Test = sign "--hf-overrides.key5=val4", # Test underscore to dash conversion "--hf_overrides.key_6", "val5", "--hf_overrides.key-7.key_8", "val6", # Test data type detection "--hf_overrides.key9", "100", "--hf_overrides.key10", "100.0", "--hf_overrides.key11", "true", "--hf_overrides.key12.key13", "null", ] parsed_args = parser.parse_args(args) assert parsed_args.model_name == "something.something" assert parsed_args.hf_overrides == { "key1": "val1", "key2": { "key3": "val2", "key4": "val3", }, "key5": "val4", "key_6": "val5", "key-7": { "key_8": "val6", }, "key9": 100, "key10": 100.0, "key11": True, "key12": { "key13": None, }, } # yapf: enable @pytest.mark.parametrize( "callable,kw_name,requires_kw_only,allow_var_kwargs,is_supported", [ # Tests for positional argument support (lambda foo: None, "foo", True, True, False), (lambda foo: None, "foo", False, True, True), # Tests for positional or keyword / keyword only (lambda foo=100: None, "foo", True, True, False), (lambda *, foo: None, "foo", False, True, True), # Tests to make sure the names of variadic params are NOT supported (lambda *args: None, "args", False, True, False), (lambda **kwargs: None, "kwargs", False, True, False), # Tests for if we allow var kwargs to add support (lambda foo: None, "something_else", False, True, False), (lambda foo, **kwargs: None, "something_else", False, True, True), (lambda foo, **kwargs: None, "kwargs", True, True, False), (lambda foo, **kwargs: None, "foo", True, True, False), ]) # yapf: disable def test_supports_kw(callable,kw_name,requires_kw_only, allow_var_kwargs,is_supported): assert supports_kw( callable=callable, kw_name=kw_name, requires_kw_only=requires_kw_only, allow_var_kwargs=allow_var_kwargs ) == is_supported @create_new_process_for_each_test() def test_memory_profiling(): # Fake out some model loading + inference memory usage to test profiling # Memory used by other processes will show up as cuda usage outside of torch from vllm.distributed.device_communicators.cuda_wrapper import ( CudaRTLibrary) lib = CudaRTLibrary() # 512 MiB allocation outside of this instance handle1 = lib.cudaMalloc(512 * 1024 * 1024) baseline_snapshot = MemorySnapshot() # load weights weights = torch.randn(128, 1024, 1024, device='cuda', dtype=torch.float32) weights_memory = 128 * 1024 * 1024 * 4 # 512 MiB def measure_current_non_torch(): free, total = torch.cuda.mem_get_info() current_used = total - free current_torch = torch.cuda.memory_reserved() current_non_torch = current_used - current_torch return current_non_torch with memory_profiling(baseline_snapshot=baseline_snapshot, weights_memory=weights_memory) as result, \ monitor(measure_current_non_torch) as monitored_values: # make a memory spike, 1 GiB spike = torch.randn(256, 1024, 1024, device='cuda', dtype=torch.float32) del spike # Add some extra non-torch memory 256 MiB (simulate NCCL) handle2 = lib.cudaMalloc(256 * 1024 * 1024) # this is an analytic value, it is exact, # we only have 256 MiB non-torch memory increase measured_diff = monitored_values.values[-1] - monitored_values.values[0] assert measured_diff == 256 * 1024 * 1024 # Check that the memory usage is within 5% of the expected values # 5% tolerance is caused by cuda runtime. # we cannot control cuda runtime in the granularity of bytes, # which causes a small error (<10 MiB in practice) non_torch_ratio = result.non_torch_increase / (256 * 1024 * 1024) # noqa assert abs(non_torch_ratio - 1) <= 0.05 assert result.torch_peak_increase == 1024 * 1024 * 1024 del weights lib.cudaFree(handle1) lib.cudaFree(handle2) def test_bind_kv_cache(): from vllm.attention import Attention ctx = { 'layers.0.self_attn': Attention(32, 128, 0.1), 'layers.1.self_attn': Attention(32, 128, 0.1), 'layers.2.self_attn': Attention(32, 128, 0.1), 'layers.3.self_attn': Attention(32, 128, 0.1), } kv_cache = [ torch.zeros((1, )), torch.zeros((1, )), torch.zeros((1, )), torch.zeros((1, )), ] bind_kv_cache(ctx, [kv_cache]) assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0] assert ctx['layers.1.self_attn'].kv_cache[0] is kv_cache[1] assert ctx['layers.2.self_attn'].kv_cache[0] is kv_cache[2] assert ctx['layers.3.self_attn'].kv_cache[0] is kv_cache[3] def test_bind_kv_cache_non_attention(): from vllm.attention import Attention # example from Jamba PP=2 ctx = { 'model.layers.20.attn': Attention(32, 128, 0.1), 'model.layers.28.attn': Attention(32, 128, 0.1), } kv_cache = [ torch.zeros((1, )), torch.zeros((1, )), ] bind_kv_cache(ctx, [kv_cache]) assert ctx['model.layers.20.attn'].kv_cache[0] is kv_cache[0] assert ctx['model.layers.28.attn'].kv_cache[0] is kv_cache[1] def test_bind_kv_cache_encoder_decoder(monkeypatch: pytest.MonkeyPatch): # V1 TESTS: ENCODER_DECODER is not supported on V1 yet. with monkeypatch.context() as m: m.setenv("VLLM_USE_V1", "0") from vllm.attention import Attention, AttentionType # example from bart ctx = { 'encoder.layers.0.self_attn.attn': Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER), 'decoder.layers.0.encoder_attn.attn': Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER_DECODER), 'decoder.layers.0.self_attn.attn': Attention(32, 128, 0.1, attn_type=AttentionType.DECODER), } kv_cache = [ torch.zeros((1, )), ] encoder_kv_cache = ctx['encoder.layers.0.self_attn.attn'].kv_cache bind_kv_cache(ctx, [kv_cache]) assert ctx['encoder.layers.0.self_attn.attn'].kv_cache is encoder_kv_cache assert ctx['decoder.layers.0.encoder_attn.attn'].kv_cache[0] is kv_cache[0] assert ctx['decoder.layers.0.self_attn.attn'].kv_cache[0] is kv_cache[0] def test_bind_kv_cache_pp(): with patch("vllm.utils.cuda_device_count_stateless", lambda: 2): # this test runs with 1 GPU, but we simulate 2 GPUs cfg = VllmConfig( parallel_config=ParallelConfig(pipeline_parallel_size=2)) with set_current_vllm_config(cfg): from vllm.attention import Attention ctx = { 'layers.0.self_attn': Attention(32, 128, 0.1), } kv_cache = [ [torch.zeros((1, ))], [torch.zeros((1, ))] ] bind_kv_cache(ctx, kv_cache) assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0][0] assert ctx['layers.0.self_attn'].kv_cache[1] is kv_cache[1][0] class TestLRUCache(LRUCache): def _on_remove(self, key, value): if not hasattr(self, "_remove_counter"): self._remove_counter = 0 self._remove_counter += 1 def test_lru_cache(): cache = TestLRUCache(3) assert cache.stat() == CacheInfo(hits=0, total=0) assert cache.stat(delta=True) == CacheInfo(hits=0, total=0) cache.put(1, 1) assert len(cache) == 1 cache.put(1, 1) assert len(cache) == 1 cache.put(2, 2) assert len(cache) == 2 cache.put(3, 3) assert len(cache) == 3 assert set(cache.cache) == {1, 2, 3} cache.put(4, 4) assert len(cache) == 3 assert set(cache.cache) == {2, 3, 4} assert cache._remove_counter == 1 assert cache.get(2) == 2 assert cache.stat() == CacheInfo(hits=1, total=1) assert cache.stat(delta=True) == CacheInfo(hits=1, total=1) assert cache[2] == 2 assert cache.stat() == CacheInfo(hits=2, total=2) assert cache.stat(delta=True) == CacheInfo(hits=1, total=1) cache.put(5, 5) assert set(cache.cache) == {2, 4, 5} assert cache._remove_counter == 2 assert cache.pop(5) == 5 assert len(cache) == 2 assert set(cache.cache) == {2, 4} assert cache._remove_counter == 3 assert cache.get(-1) is None assert cache.stat() == CacheInfo(hits=2, total=3) assert cache.stat(delta=True) == CacheInfo(hits=0, total=1) cache.pop(10) assert len(cache) == 2 assert set(cache.cache) == {2, 4} assert cache._remove_counter == 3 cache.get(10) assert len(cache) == 2 assert set(cache.cache) == {2, 4} assert cache._remove_counter == 3 cache.put(6, 6) assert len(cache) == 3 assert set(cache.cache) == {2, 4, 6} assert 2 in cache assert 4 in cache assert 6 in cache cache.remove_oldest() assert len(cache) == 2 assert set(cache.cache) == {2, 6} assert cache._remove_counter == 4 cache.clear() assert len(cache) == 0 assert cache._remove_counter == 6 assert cache.stat() == CacheInfo(hits=0, total=0) assert cache.stat(delta=True) == CacheInfo(hits=0, total=0) cache._remove_counter = 0 cache[1] = 1 assert len(cache) == 1 cache[1] = 1 assert len(cache) == 1 cache[2] = 2 assert len(cache) == 2 cache[3] = 3 assert len(cache) == 3 assert set(cache.cache) == {1, 2, 3} cache[4] = 4 assert len(cache) == 3 assert set(cache.cache) == {2, 3, 4} assert cache._remove_counter == 1 assert cache[2] == 2 cache[5] = 5 assert set(cache.cache) == {2, 4, 5} assert cache._remove_counter == 2 del cache[5] assert len(cache) == 2 assert set(cache.cache) == {2, 4} assert cache._remove_counter == 3 cache.pop(10) assert len(cache) == 2 assert set(cache.cache) == {2, 4} assert cache._remove_counter == 3 cache[6] = 6 assert len(cache) == 3 assert set(cache.cache) == {2, 4, 6} assert 2 in cache assert 4 in cache assert 6 in cache # yapf: disable @pytest.mark.parametrize( ("src_dtype", "tgt_dtype", "expected_result"), [ # Different precision_levels (torch.bool, torch.int8, True), (torch.bool, torch.float16, True), (torch.bool, torch.complex32, True), (torch.int64, torch.bool, False), (torch.int64, torch.float16, True), (torch.int64, torch.complex32, True), (torch.float64, torch.bool, False), (torch.float64, torch.int8, False), (torch.float64, torch.complex32, True), (torch.complex128, torch.bool, False), (torch.complex128, torch.int8, False), (torch.complex128, torch.float16, False), # precision_level=0 (torch.bool, torch.bool, True), # precision_level=1 (torch.int8, torch.int16, True), (torch.int16, torch.int8, False), (torch.uint8, torch.int8, False), (torch.int8, torch.uint8, False), # precision_level=2 (torch.float16, torch.float32, True), (torch.float32, torch.float16, False), (torch.bfloat16, torch.float32, True), (torch.float32, torch.bfloat16, False), # precision_level=3 (torch.complex32, torch.complex64, True), (torch.complex64, torch.complex32, False), ], ) # yapf: enable def test_is_lossless_cast(src_dtype, tgt_dtype, expected_result): assert is_lossless_cast(src_dtype, tgt_dtype) == expected_result # yapf: disable @pytest.mark.parametrize( ("dtypes", "expected_result"), [ ([torch.bool], torch.bool), ([torch.bool, torch.int8], torch.int8), ([torch.bool, torch.int8, torch.float16], torch.float16), ([torch.bool, torch.int8, torch.float16, torch.complex32], torch.complex32), # noqa: E501 ], ) # yapf: enable def test_common_broadcastable_dtype(dtypes, expected_result): assert common_broadcastable_dtype(dtypes) == expected_result def test_placeholder_module_error_handling(): placeholder = PlaceholderModule("placeholder_1234") def build_ctx(): return pytest.raises(ModuleNotFoundError, match="No module named") with build_ctx(): int(placeholder) with build_ctx(): placeholder() with build_ctx(): _ = placeholder.some_attr with build_ctx(): # Test conflict with internal __name attribute _ = placeholder.name # OK to print the placeholder or use it in a f-string _ = repr(placeholder) _ = str(placeholder) # No error yet; only error when it is used downstream placeholder_attr = placeholder.placeholder_attr("attr") with build_ctx(): int(placeholder_attr) with build_ctx(): placeholder_attr() with build_ctx(): _ = placeholder_attr.some_attr with build_ctx(): # Test conflict with internal __module attribute _ = placeholder_attr.module # yapf: disable @pytest.mark.parametrize( "obj,key1,key2", [ # Tests for both keys exist ({1: "a", 2: "b"}, 1, 2), # Tests for one key does not exist ({1: "a", 2: "b"}, 1, 3), # Tests for both keys do not exist ({1: "a", 2: "b"}, 3, 4), ]) # yapf: enable def test_swap_dict_values(obj, key1, key2): original_obj = obj.copy() swap_dict_values(obj, key1, key2) if key1 in original_obj: assert obj[key2] == original_obj[key1] else: assert key2 not in obj if key2 in original_obj: assert obj[key1] == original_obj[key2] else: assert key1 not in obj def test_model_specification(parser_with_config, cli_config_file, cli_config_file_with_model): # Test model in CLI takes precedence over config args = parser_with_config.parse_args( ['serve', 'cli-model', '--config', cli_config_file_with_model]) assert args.model_tag == 'cli-model' assert args.served_model_name == 'mymodel' # Test model from config file works args = parser_with_config.parse_args([ 'serve', '--config', cli_config_file_with_model, ]) assert args.model == 'config-model' assert args.served_model_name == 'mymodel' # Test no model specified anywhere raises error with pytest.raises(ValueError, match="No model specified!"): parser_with_config.parse_args(['serve', '--config', cli_config_file]) # Test using --model option raises error with pytest.raises( ValueError, match= ("With `vllm serve`, you should provide the model as a positional " "argument or in a config file instead of via the `--model` option."), ): parser_with_config.parse_args(['serve', '--model', 'my-model']) # Test other config values are preserved args = parser_with_config.parse_args([ 'serve', 'cli-model', '--config', cli_config_file_with_model, ]) assert args.tensor_parallel_size == 2 assert args.trust_remote_code is True assert args.multi_step_stream_outputs is False assert args.port == 12312 @pytest.mark.parametrize("input", [(), ("abc", ), (None, ), (None, bool, [1, 2, 3])]) @pytest.mark.parametrize("output", [0, 1, 2]) def test_sha256(input: tuple, output: int): hash = sha256(input) assert hash is not None assert isinstance(hash, int) assert hash != 0 bytes = pickle.dumps(input, protocol=pickle.HIGHEST_PROTOCOL) assert hash == int.from_bytes(hashlib.sha256(bytes).digest(), byteorder="big") # hashing again, returns the same value assert hash == sha256(input) # hashing different input, returns different value assert hash != sha256(input + (1, )) @pytest.mark.parametrize( "path,expected", [ ("ipc://some_path", ("ipc", "some_path", "")), ("tcp://127.0.0.1:5555", ("tcp", "127.0.0.1", "5555")), ("tcp://[::1]:5555", ("tcp", "::1", "5555")), # IPv6 address ("inproc://some_identifier", ("inproc", "some_identifier", "")), ]) def test_split_zmq_path(path, expected): assert split_zmq_path(path) == expected @pytest.mark.parametrize( "invalid_path", [ "invalid_path", # Missing scheme "tcp://127.0.0.1", # Missing port "tcp://[::1]", # Missing port for IPv6 "tcp://:5555", # Missing host ]) def test_split_zmq_path_invalid(invalid_path): with pytest.raises(ValueError): split_zmq_path(invalid_path) def test_make_zmq_socket_ipv6(): # Check if IPv6 is supported by trying to create an IPv6 socket try: sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.close() except socket.error: pytest.skip("IPv6 is not supported on this system") ctx = zmq.Context() ipv6_path = "tcp://[::]:5555" # IPv6 loopback address socket_type = zmq.REP # Example socket type # Create the socket zsock: zmq.Socket = make_zmq_socket(ctx, ipv6_path, socket_type) # Verify that the IPV6 option is set assert zsock.getsockopt( zmq.IPV6) == 1, "IPV6 option should be enabled for IPv6 addresses" # Clean up zsock.close() ctx.term() def test_make_zmq_path(): assert make_zmq_path("tcp", "127.0.0.1", "5555") == "tcp://127.0.0.1:5555" assert make_zmq_path("tcp", "::1", "5555") == "tcp://[::1]:5555"