# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Sequence as GenericSequence from itertools import count from typing import Callable, Optional, TypeVar, Union from unittest.mock import MagicMock import torch from vllm.engine.arg_utils import EngineArgs from vllm.model_executor.layers.sampler import SamplerOutput from vllm.model_executor.utils import set_random_seed from vllm.sampling_params import SamplingParams from vllm.sequence import (CompletionSequenceGroupOutput, Logprob, SequenceData, SequenceGroupMetadata, SequenceOutput) from vllm.utils import get_distributed_init_method, get_ip, get_open_port from vllm.worker.cache_engine import CacheEngine from vllm.worker.model_runner import ModelRunner from vllm.worker.worker import Worker T = TypeVar("T", bound=Worker) def round_up_to_next_block(seq_len: int, block_size: int) -> int: return (seq_len + block_size - 1) // block_size def mock_worker(cls=None, vocab_size: int = 30_000, max_model_len: int = 2048, rank: int = 0, use_spec: bool = True) -> MagicMock: if cls is None: cls = Worker spec = cls if use_spec else None worker = MagicMock(spec=spec) worker.vocab_size = vocab_size worker.max_model_len = max_model_len worker.rank = rank worker.device = 'cuda:0' return worker def patch_execute_model_with_seeds(worker: Worker, rand_seeds: list[int]): seed_iter = iter(rand_seeds) original_execute_model = worker.execute_model def new_execute_model(*args, **kwargs): result = original_execute_model(*args, **kwargs) set_random_seed(next(seed_iter)) return result return new_execute_model def zero_kv_cache(cache_engine: list[CacheEngine]): assert cache_engine[0].gpu_cache for key_blocks, value_blocks in cache_engine[0].gpu_cache: key_blocks.zero_() value_blocks.zero_() def create_worker(cls: Callable[..., T], model_name: str, block_size: int, num_gpu_blocks: int, seed: int, is_driver_worker: bool = True, enforce_eager: bool = True, model_runner_cls: Optional[ModelRunner] = None, dtype: Optional[str] = "auto") -> T: engine_args = EngineArgs( model=model_name, seed=seed, block_size=block_size, enforce_eager=enforce_eager, dtype=dtype, ) engine_config = engine_args.create_engine_config() distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) worker = cls( vllm_config=engine_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, is_driver_worker=is_driver_worker, model_runner_cls=model_runner_cls, ) worker.init_device() worker.load_model() engine_config.cache_config.num_gpu_blocks = num_gpu_blocks engine_config.cache_config.num_cpu_blocks = 0 worker.initialize_cache( num_gpu_blocks=engine_config.cache_config.num_gpu_blocks, num_cpu_blocks=engine_config.cache_config.num_cpu_blocks) return worker def create_seq_group_metadata_from_prompts( prompts: list[list[int]], num_gpu_blocks: int, block_size: int, final_prompt_lens: list[int], continuations: Optional[list[list[int]]] = None, seq_ids: Optional[list[int]] = None, ) -> list[SequenceGroupMetadata]: if continuations is None: continuations = [[] for _ in prompts] if seq_ids is None: seq_ids = list(i for i, _ in enumerate(prompts)) free_gpu_blocks = list(range(num_gpu_blocks)) block_allocations = { i: [ free_gpu_blocks.pop() for _ in range(round_up_to_next_block(final_len, block_size)) ] for i, final_len in enumerate(final_prompt_lens) } seq_grou_metadata_list = [] for i, (prompt_token_ids, cont_token_ids) in enumerate(zip(prompts, continuations)): data = SequenceData.from_seqs(prompt_token_ids, cont_token_ids) data.update_num_computed_tokens( len(prompt_token_ids) + len(cont_token_ids) - 1) seq_data = {i: data} seq_grou_metadata_list.append( SequenceGroupMetadata( request_id=str(i), is_prompt=len(cont_token_ids) == 0, seq_data=seq_data, sampling_params=SamplingParams(temperature=0.0), block_tables={i: block_allocations[i][:]}, )) return seq_grou_metadata_list def create_chunked_seq_group_metadata_from_prompt( prompt: list[int], num_gpu_blocks: int, chunk_size: int, block_size: int, seq_id: Optional[int] = None) -> list[SequenceGroupMetadata]: if seq_id is None: seq_id = 0 free_gpu_blocks = list(range(num_gpu_blocks)) block_allocations = [ free_gpu_blocks.pop() for _ in range(round_up_to_next_block(len(prompt), block_size)) ] seq_group_metadata_list = [] for i, idx in enumerate(range(0, len(prompt), chunk_size)): chunk_ids = prompt[idx:idx + chunk_size] data = SequenceData.from_seqs(prompt) data.update_num_computed_tokens(idx) seq_data = {i: data} seq_group_metadata_list.append( SequenceGroupMetadata( request_id=str(seq_id), is_prompt=True, do_sample=idx + chunk_size >= len(prompt), # terminal chunk seq_data=seq_data, sampling_params=SamplingParams(temperature=0.0), block_tables={i: block_allocations}, token_chunk_size=len(chunk_ids))) return seq_group_metadata_list def assert_logprobs_dict_allclose( actual_logprobs: list[dict[int, Logprob]], expected_logprobs: list[dict[int, Logprob]]) -> None: for single_step_actual_logprobs, single_step_expected_logprobs in zip( actual_logprobs, expected_logprobs): assert set(single_step_actual_logprobs.keys()) == set( single_step_expected_logprobs.keys()) for token_id in single_step_actual_logprobs: actual = torch.tensor( single_step_actual_logprobs[token_id].logprob) expected = torch.tensor( single_step_expected_logprobs[token_id].logprob) torch.testing.assert_close(actual, expected) def create_sampler_output_list( token_ids: torch.Tensor, probs: GenericSequence[Optional[torch.Tensor]], logprobs: GenericSequence[Optional[torch.Tensor]], seq_ids: Optional[list[int]] = None) -> list[SamplerOutput]: num_steps, batch_size = token_ids.shape token_ids_by_step = token_ids.tolist() if seq_ids is None: seq_ids = list(range(batch_size)) return [ SamplerOutput(outputs=[ CompletionSequenceGroupOutput( samples=[ SequenceOutput( output_token=token_id, parent_seq_id=seq_ids[seq_index], logprobs={token_id: Logprob(0)}, ) ], prompt_logprobs=None, ) for seq_index, token_id in enumerate(token_ids_by_step[step]) ], sampled_token_probs=probs[step], logprobs=logprobs[step], sampled_token_ids=token_ids[step]) for step in range(num_steps) ] def create_batch(batch_size, k, prompt_len: Union[int, list[int]] = 10, prev_output_token_len: int = 10, seq_ids: Optional[list[int]] = None, num_gpu_blocks: Optional[int] = None, block_size: Optional[int] = None, prefill_chunk_size: Optional[int] = None): if block_size is None: block_size = 8 if num_gpu_blocks is None: num_gpu_blocks = 2048 // block_size iterator = count() if isinstance(prompt_len, int): prompt_lens = [prompt_len for _ in range(batch_size)] else: prompt_lens = prompt_len prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens] if prefill_chunk_size: # Create a batch of chunked prompts. if not seq_ids: seq_ids = list(range(len(prompts))) seq_group_metadata_list = [] for p, sid in zip(prompts, seq_ids): seq_group_metadata_list += \ create_chunked_seq_group_metadata_from_prompt( p, num_gpu_blocks, prefill_chunk_size, block_size, sid) seq_group_metadata_list = seq_group_metadata_list[:batch_size] prev_output_tokens = [] else: prev_output_tokens = [[ next(iterator) for _ in range(prev_output_token_len) ] for _ in range(batch_size)] final_prompt_lens = [ len(prompt) + len(prev_output_token) + k + 1 for prompt, prev_output_token in zip(prompts, prev_output_tokens) ] seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, final_prompt_lens, prev_output_tokens, seq_ids) return seq_group_metadata_list, prompts, prev_output_tokens def maybe_enable_chunked_prefill(prefill_chunk_size, llm_kwargs): if prefill_chunk_size > 0: llm_kwargs.update( **{ "enable_chunked_prefill": True, "max_num_batched_tokens": prefill_chunk_size, "max_num_seqs": prefill_chunk_size }) else: llm_kwargs["enable_chunked_prefill"] = False