vllm/examples/offline_inference/disaggregated-prefill-v1/prefill_example.py

59 lines
1.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
def read_prompts():
context = "Hi " * 1000
context2 = "Hey " * 500
return [
context + "Hello, my name is",
context + "The capital of France is",
context2 + "Your name is",
context2 + "The capital of China is",
]
def main():
prompts = read_prompts()
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
gpu_memory_utilization=0.8,
kv_transfer_config=KVTransferConfig(
kv_connector="SharedStorageConnector",
kv_role="kv_both",
kv_connector_extra_config={"shared_storage_path": "local_storage"},
),
) # , max_model_len=2048, max_num_batched_tokens=2048)
# 1ST generation (prefill instance)
outputs = llm.generate(
prompts,
sampling_params,
)
new_prompts = []
print("-" * 30)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
new_prompts.append(prompt + generated_text)
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 30)
# Write new_prompts to output.txt
with open("output.txt", "w") as f:
for prompt in new_prompts:
f.write(prompt + "\n")
print(f"Saved {len(new_prompts)} prompts to output.txt")
if __name__ == "__main__":
main()