vllm/tests/distributed/test_sequence_parallel.py

327 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
WARNING: This test runs in both single-node (4 GPUs) and multi-node
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
important to set the distributed backend to "mp" to avoid Ray scheduling
all workers in a node other than the head node, which can cause the test
to fail.
"""
import json
import os
from dataclasses import dataclass
from typing import Literal, NamedTuple, Optional
import pytest
from vllm.config import TaskOption
from vllm.logger import init_logger
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import compare_two_settings, create_new_process_for_each_test
logger = init_logger("test_sequence_parallel")
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
class ParallelSetup(NamedTuple):
tp_size: int
pp_size: int
enable_fusion: bool
eager_mode: bool
chunked_prefill: bool
class SPTestOptions(NamedTuple):
multi_node_only: bool
load_format: Optional[str] = None
@dataclass
class SPTestSettings:
parallel_setups: list[ParallelSetup]
# NOTE: the length of distributed_backends and
# vllm_major_versions should be the same, and they
# are first zipped together to iterate over all
# test settings.
distributed_backends: list[str]
# vllm major version: "0" for V0, "1" for V1
vllm_major_versions: list[str]
task: TaskOption
test_options: SPTestOptions
def __post_init__(self):
if len(self.distributed_backends) != len(self.vllm_major_versions):
raise ValueError(
f"Length mismatch: distributed_backends "
f"({len(self.distributed_backends)}) != "
f"vllm_major_versions ({len(self.vllm_major_versions)})")
@staticmethod
def detailed(
*,
tp_base: int = 2,
pp_base: int = 1,
multi_node_only: bool = False,
task: TaskOption = "auto",
load_format: Optional[str] = None,
):
parallel_setups = []
for eager_mode_val in [False, True]:
for pp_multiplier in [1, 2]:
for chunked_prefill_val in [False, True]:
parallel_setups.append(
ParallelSetup(tp_size=tp_base,
pp_size=pp_multiplier * pp_base,
enable_fusion=False,
eager_mode=eager_mode_val,
chunked_prefill=chunked_prefill_val))
return SPTestSettings(
parallel_setups=parallel_setups,
distributed_backends=["mp", "ray"],
vllm_major_versions=["1", "1"],
task=task,
test_options=SPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
@staticmethod
def fast(
*,
tp_base: int = 2,
pp_base: int = 1,
task: TaskOption = "auto",
multi_node_only: bool = False,
load_format: Optional[str] = None,
):
parallel_setups = []
for eager_mode_val in [False, True]:
for pp_multiplier in [1, 2]:
for chunked_prefill_val in [False, True]:
parallel_setups.append(
ParallelSetup(tp_size=tp_base,
pp_size=pp_multiplier * pp_base,
enable_fusion=False,
eager_mode=eager_mode_val,
chunked_prefill=chunked_prefill_val))
return SPTestSettings(
parallel_setups=parallel_setups,
distributed_backends=["mp", "ray"],
vllm_major_versions=["1", "1"],
task=task,
test_options=SPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
@staticmethod
def fp8_quant(
*,
tp_base: int = 2,
pp_base: int = 1,
task: TaskOption = "auto",
multi_node_only: bool = False,
load_format: Optional[str] = None,
):
parallel_setups = []
for fusion_val in [False, True]:
parallel_setups.append(
ParallelSetup(tp_size=tp_base,
pp_size=pp_base,
enable_fusion=fusion_val,
eager_mode=True,
chunked_prefill=False))
return SPTestSettings(
parallel_setups=parallel_setups,
distributed_backends=["mp", "ray"],
vllm_major_versions=["1", "1"],
task=task,
test_options=SPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
def iter_params(self, model_id: str):
opts = self.test_options
for parallel_setup in self.parallel_setups:
for backend, vllm_major_version in zip(self.distributed_backends,
self.vllm_major_versions):
yield (model_id, parallel_setup, backend, vllm_major_version,
self.task, opts)
def _compare_sp(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: SPTestOptions,
num_gpus_available: int,
*,
method: Literal["generate", "encode"],
is_multimodal: bool,
):
(
tp_size,
pp_size,
enable_fusion,
eager_mode,
chunked_prefill,
) = parallel_setup
multi_node_only, load_format = test_options
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_transformers_version(on_fail="skip")
trust_remote_code = model_info.trust_remote_code
tokenizer_mode = model_info.tokenizer_mode
hf_overrides = model_info.hf_overrides
if load_format == "dummy":
# Avoid OOM
text_overrides = {
"num_hidden_layers": 4,
"hidden_size": 512,
"intermediate_size": 800,
"num_attention_heads": 4,
"num_key_value_heads": 1,
}
if is_multimodal:
hf_overrides.update({"text_config": text_overrides})
else:
hf_overrides.update(text_overrides)
else:
model_info.check_available_online(on_fail="skip")
if num_gpus_available < tp_size * pp_size:
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
if VLLM_MULTI_NODE and distributed_backend == "mp":
pytest.skip("Skipping multi-node pipeline parallel test for "
"multiprocessing distributed backend")
if multi_node_only and not VLLM_MULTI_NODE:
pytest.skip("Not in multi-node setting")
common_args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"float16",
"--max-model-len",
"2048",
"--max-num-seqs",
"8",
]
if chunked_prefill:
common_args.append("--enable-chunked-prefill")
if eager_mode:
common_args.append("--enforce-eager")
if task != "auto":
common_args.extend(["--task", task])
if trust_remote_code:
common_args.append("--trust-remote-code")
if tokenizer_mode:
common_args.extend(["--tokenizer-mode", tokenizer_mode])
if load_format:
common_args.extend(["--load-format", load_format])
if hf_overrides:
common_args.extend(["--hf-overrides", json.dumps(hf_overrides)])
compilation_config = {
'level': 3,
'custom_ops': ["+rms_norm"],
'compile_sizes': [4, 8],
'splitting_ops': [],
'pass_config': {
'enable_sequence_parallelism': True,
'enable_fusion': enable_fusion,
'enable_noop': True,
},
}
tp_sp_env = tp_env = {
"VLLM_USE_V1": vllm_major_version,
}
tp_sp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
distributed_backend,
"--compilation_config",
json.dumps(compilation_config),
]
tp_env = {
"VLLM_USE_V1": vllm_major_version,
}
tp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
"mp",
]
try:
compare_two_settings(model_id,
tp_sp_args,
tp_args,
tp_sp_env,
tp_env,
method=method)
except Exception:
testing_ray_compiled_graph = tp_sp_env is not None
if testing_ray_compiled_graph and vllm_major_version == "0":
# Ray Compiled Graph tests are flaky for V0,
# so we don't want to fail the test
logger.exception("Ray Compiled Graph tests failed")
else:
raise
SP_TEXT_GENERATION_MODELS = {
# [Decoder-only]
"meta-llama/Llama-3.2-1B-Instruct": SPTestSettings.fast(),
"RedHatAI/Meta-Llama-3.1-8B-Instruct-FP8": SPTestSettings.fp8_quant(),
}
SP_TEST_MODELS = [
# TODO support other models
# [LANGUAGE GENERATION]
"meta-llama/Llama-3.2-1B-Instruct",
"RedHatAI/Meta-Llama-3.1-8B-Instruct-FP8"
]
@pytest.mark.parametrize(
("model_id", "parallel_setup", "distributed_backend", "vllm_major_version",
"task", "test_options"),
[
params for model_id, settings in SP_TEXT_GENERATION_MODELS.items()
for params in settings.iter_params(model_id)
if model_id in SP_TEST_MODELS
],
)
@create_new_process_for_each_test()
def test_tp_sp_generation(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: SPTestOptions,
num_gpus_available,
):
_compare_sp(model_id,
parallel_setup,
distributed_backend,
vllm_major_version,
task,
test_options,
num_gpus_available,
method="generate",
is_multimodal=False)