vllm/tests/entrypoints/openai/test_completion_with_prompt...

259 lines
9.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import io
import shutil
from tempfile import TemporaryDirectory
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import torch
# downloading lora to test lora requests
from huggingface_hub import snapshot_download
from openai import BadRequestError
from transformers import AutoConfig, AutoTokenizer
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
LORA_NAME = "typeof/zephyr-7b-beta-lora"
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
@pytest.fixture(scope="module")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.fixture(scope="module")
def zephyr_lora_added_tokens_files(zephyr_lora_files):
tmp_dir = TemporaryDirectory()
tmp_model_dir = f"{tmp_dir.name}/zephyr"
shutil.copytree(zephyr_lora_files, tmp_model_dir)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Copy tokenizer to adapter and add some unique tokens
# 32000, 32001, 32002
added = tokenizer.add_tokens(["vllm1", "vllm2", "vllm3"],
special_tokens=True)
assert added == 3
tokenizer.save_pretrained(tmp_model_dir)
yield tmp_model_dir
tmp_dir.cleanup()
@pytest.fixture(scope="module")
def default_server_args(
zephyr_lora_files,
zephyr_lora_added_tokens_files,
) -> list[str]:
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--max-num-seqs",
"128",
"--enforce-eager",
# Prompt Embeds server args
"--enable-prompt-embeds",
"--no-enable-chunked-prefill",
]
@pytest.fixture(scope="module",
params=["", "--disable-frontend-multiprocessing"])
def server_with_prompt_embeds(default_server_args, request):
if request.param:
default_server_args.append(request.param)
with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client_with_prompt_embeds(server_with_prompt_embeds):
async with server_with_prompt_embeds.get_async_client() as async_client:
yield async_client
def create_dummy_embeds(num_tokens: int = 5) -> str:
"""Create dummy embeddings and return them as base64 encoded string."""
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
buffer = io.BytesIO()
torch.save(dummy_embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test case: Single prompt embeds input
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
assert len(completion.choices[0].text) >= 1
assert completion.choices[0].prompt_logprobs is None
# Test case: batch completion with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})
assert len(completion.choices) == 2
assert len(completion.choices[0].text) >= 1
assert len(completion.choices[1].text) >= 1
# Test case: streaming with prompt_embeds
encoded_embeds = create_dummy_embeds()
single_completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
single_output = single_completion.choices[0].text
stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
stream=True,
extra_body={"prompt_embeds": encoded_embeds})
chunks = []
finish_reason_count = 0
async for chunk in stream:
chunks.append(chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == "length"
assert chunk.choices[0].text
assert "".join(chunks) == single_output
# Test case: batch streaming with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
stream=True,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})
chunks_stream_embeds: list[list[str]] = [[], []]
finish_reason_count = 0
async for chunk in stream:
chunks_stream_embeds[chunk.choices[0].index].append(
chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
assert finish_reason_count == 2
assert chunk.choices[0].finish_reason == "length"
assert chunk.choices[0].text
assert len(chunks_stream_embeds[0]) > 0
assert len(chunks_stream_embeds[1]) > 0
# Test case: mixed text and prompt_embeds
encoded_embeds = create_dummy_embeds()
completion_mixed = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
assert len(completion.choices) == 2
completion_text_only = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
max_tokens=5,
temperature=0.0,
)
completion_embeds_only = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="",
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds})
# Embeddings responses should be handled first
assert completion_mixed.choices[0].text == completion_embeds_only.choices[
0].text
assert completion_mixed.choices[1].text == completion_text_only.choices[
0].text
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_errors_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test error case: invalid prompt_embeds
with pytest.raises(BadRequestError):
await client_with_prompt_embeds.completions.create(
prompt="",
model=model_name,
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": "invalid_base64"})
@pytest.mark.asyncio
@pytest.mark.parametrize("logprobs_arg", [1, 0])
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_logprobs_and_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
model_name: str):
# Test case: Logprobs using prompt_embeds
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
echo=False,
logprobs=logprobs_arg,
extra_body={"prompt_embeds": encoded_embeds})
logprobs = completion.choices[0].logprobs
assert logprobs is not None
assert len(logprobs.text_offset) == 5
assert len(logprobs.token_logprobs) == 5
assert len(logprobs.top_logprobs) == 5
for top_logprobs in logprobs.top_logprobs[1:]:
assert max(logprobs_arg, 1) <= len(top_logprobs) <= logprobs_arg + 1
assert len(logprobs.tokens) == 5
# Test case: Log probs with batch completion and prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
max_tokens=5,
temperature=0.0,
echo=False,
logprobs=logprobs_arg,
extra_body={"prompt_embeds": [encoded_embeds, encoded_embeds2]})
assert len(completion.choices) == 2
for choice in completion.choices:
logprobs = choice.logprobs
assert logprobs is not None
assert len(logprobs.text_offset) == 5
assert len(logprobs.token_logprobs) == 5
assert len(logprobs.top_logprobs) == 5
for top_logprobs in logprobs.top_logprobs[1:]:
assert max(logprobs_arg,
1) <= len(top_logprobs) <= logprobs_arg + 1
assert len(logprobs.tokens) == 5