vllm/tests/kernels/moe/test_block_fp8.py

297 lines
9.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.kernels.moe.utils import make_test_weights
from tests.kernels.quant_utils import (native_per_token_group_quant_fp8,
native_w8a8_block_matmul)
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_experts
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_valid_deep_gemm_shape, deep_gemm_moe_fp8)
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_topk, modular_triton_fused_moe)
from vllm.platforms import current_platform
dg_available = False
try:
import deep_gemm
dg_available = True
except ImportError:
pass
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
allow_module_level=True)
vllm_config = VllmConfig()
vllm_config.scheduler_config.max_num_seqs = 128
vllm_config.scheduler_config.max_model_len = 8192
# Test configurations
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
# and its hidden size is 7168.
MNK_FACTORS = [
(1, 128, 128),
(1, 512, 512),
(1, 128, 7168),
(1, 1024, 7168),
(1, 4608, 128),
(1, 4608, 512),
(1, 4608, 7168),
(83, 128, 128),
(83, 512, 512),
(83, 1024, 7168),
(83, 4608, 512),
(83, 4608, 7168),
(128, 128, 128),
(128, 512, 512),
(128, 1024, 7168),
(128, 4608, 512),
(128, 4608, 7168),
(2048, 128, 128),
(2048, 1024, 7168),
(2048, 4608, 512),
(2048, 4608, 7168),
(8192, 128, 128),
(8192, 512, 512),
(8192, 128, 7168),
(8192, 1024, 7168),
(8192, 4608, 512),
(8192, 4608, 7168),
]
MNK_FACTORS_DG = [
(128, 128, 128),
(128, 512, 512),
(128, 128, 7168),
(128, 1024, 7168),
(128, 4608, 128),
(128, 4608, 512),
(128, 4608, 7168),
(192, 128, 128),
(192, 512, 512),
(192, 1024, 7168),
(192, 4608, 512),
(192, 4608, 7168),
(1335, 128, 128),
(1335, 1024, 7168),
(1335, 4608, 512),
(1335, 4608, 7168),
(2048, 128, 128),
(2048, 512, 512),
(2048, 128, 7168),
(2048, 1024, 7168),
(2048, 4608, 128),
(2048, 4608, 512),
(2048, 4608, 7168),
]
BLOCK_SIZE = [[128, 128]]
E = [2, 8, 16] # [128, 256]
TOP_KS = [1, 2, 6]
SEEDS = [0]
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, topk_weight, topk_ids,
block_shape):
"""Fused moe with block-wise quantization using native torch."""
B, D = a.shape
topk = topk_ids.size(1)
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
block_shape,
output_dtype=a.dtype)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(
act_out, block_k)
out[mask] = native_w8a8_block_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
block_shape,
output_dtype=a.dtype)
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
# Skip all tests if CUDA is not available
pytest.importorskip("torch.cuda")
@pytest.fixture(autouse=True)
def setup_cuda():
torch.set_default_device("cuda")
@pytest.mark.parametrize(("M", "N", "K"), MNK_FACTORS)
@pytest.mark.parametrize("E", E)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("block_size", BLOCK_SIZE)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed,
monkeypatch):
if topk > E:
pytest.skip(f"Skipping test; topk={topk} > E={E}")
torch.manual_seed(seed)
monkeypatch.setenv("VLLM_FUSED_MOE_CHUNK_SIZE", "2048")
a = torch.randn((M, K), dtype=dtype) / 10
score = torch.randn((M, E), dtype=dtype)
_, w1, w1_s, _, w2, w2_s = make_test_weights(E,
N,
K,
dtype,
torch.float8_e4m3fn,
per_act_token_quant=False,
block_shape=block_size)
m_fused_moe = modular_triton_fused_moe(use_fp8_w8a8=True,
use_int8_w8a8=False,
use_int8_w8a16=False,
use_int4_w4a16=False,
per_act_token_quant=False,
block_shape=block_size)
topk_weights, topk_ids, _ = fused_topk(a, score.float(), topk, False)
# Set the context to avoid lots of warning spam.
with set_current_vllm_config(vllm_config):
ref_out = torch_w8a8_block_fp8_moe(
a,
w1,
w2,
w1_s,
w2_s,
topk_weights,
topk_ids,
block_size,
)
out = fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
m_out = m_fused_moe(
a,
w1,
w2,
topk_weights,
topk_ids,
w1_scale=w1_s,
w2_scale=w2_s,
)
# 0.039 only needed for [40000-4608-7168-2-1-block_size852-dtype852-0]
tol = 0.035 if M < 40000 else 0.039
torch.testing.assert_close(out, ref_out, atol=tol, rtol=tol)
torch.testing.assert_close(m_out, ref_out, atol=tol, rtol=tol)
@pytest.mark.parametrize(("M", "N", "K"), MNK_FACTORS_DG)
@pytest.mark.parametrize("E", E)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.skipif(not dg_available, reason="DeepGemm kernels not available.")
@torch.inference_mode()
def test_w8a8_block_fp8_deep_gemm_fused_moe(M, N, K, E, topk, seed,
monkeypatch):
if topk > E:
pytest.skip(f"Skipping test: topk={topk} > E={E}")
if not _valid_deep_gemm_shape(M, N, K):
pytest.skip(f"Skipping test: invalid size m={M}, n={N}, k={K}")
chunk_size = 1024
torch.manual_seed(seed)
monkeypatch.setenv("VLLM_FUSED_MOE_CHUNK_SIZE", str(chunk_size))
block_m = deep_gemm.get_m_alignment_for_contiguous_layout()
block_size = [block_m, block_m]
dtype = torch.bfloat16
a = torch.randn((M, K), dtype=dtype) / 10
score = torch.randn((M, E), dtype=dtype)
_, w1, w1_s, _, w2, w2_s = make_test_weights(E,
N,
K,
dtype,
torch.float8_e4m3fn,
per_act_token_quant=False,
block_shape=block_size)
# Note: for now use_compile will error out if the problem size is
# large enough to trigger chunking. I'm leaving the flag and
# setup code in case we are able to revisit this later.
use_compile = False
use_cudagraph = (chunk_size < M and N >= 1024 and K >= 1024
and current_platform.is_cuda_alike())
topk_weights, topk_ids, _ = fused_topk(a, score.float(), topk, False)
# Set the context to avoid lots of warning spam.
with set_current_vllm_config(vllm_config):
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, topk_weights,
topk_ids, block_size)
if use_compile:
deep_gemm_moe_fp8_fn = torch.compile(deep_gemm_moe_fp8,
backend="inductor",
fullgraph=True)
torch._dynamo.mark_dynamic(a, 0)
torch._dynamo.mark_dynamic(topk_weights, 0)
torch._dynamo.mark_dynamic(topk_ids, 0)
else:
deep_gemm_moe_fp8_fn = deep_gemm_moe_fp8
out = deep_gemm_moe_fp8_fn(a, w1, w2, w1_s, w2_s, topk_weights,
topk_ids)
if use_cudagraph:
out.fill_(0)
stream = torch.cuda.Stream()
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, stream=stream):
out = deep_gemm_moe_fp8_fn(a, w1, w2, w1_s, w2_s, topk_weights,
topk_ids)
torch.cuda.synchronize()
graph.replay()
torch.cuda.synchronize()
torch.testing.assert_close(out, ref_out, atol=0.035, rtol=0.035)