vllm/tests/kernels/moe/test_block_int8.py

148 lines
5.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.kernels.moe.utils import make_test_weights
from tests.kernels.quant_utils import (native_per_token_group_quant_int8,
native_w8a8_block_matmul)
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.platforms import current_platform
if current_platform.get_device_capability() < (7, 0):
pytest.skip("INT8 Triton requires CUDA 7.0 or higher",
allow_module_level=True)
vllm_config = VllmConfig()
vllm_config.scheduler_config.max_num_seqs = 128
vllm_config.scheduler_config.max_model_len = 8192
DTYPES = [torch.half, torch.bfloat16]
MNK_FACTORS = [
(1, 128, 128),
(1, 512, 512),
(1, 128, 7168),
(1, 1024, 7168),
(1, 4096, 128),
(1, 4096, 512),
(1, 4096, 7168),
(33, 128, 128),
(33, 512, 512),
(33, 128, 7168),
(33, 1024, 7168),
(33, 4096, 128),
(33, 4096, 512),
(33, 4096, 7168),
(128, 128, 128),
(128, 512, 512),
(128, 1024, 7168),
(128, 4096, 512),
(128, 4096, 7168),
(222, 128, 128),
(222, 512, 512),
(222, 1024, 7168),
(222, 4096, 512),
(222, 4096, 7168),
(2048, 128, 128),
(2048, 1024, 7168),
(2048, 4096, 512),
(2048, 4096, 7168),
]
E = [8, 24]
TOP_KS = [2, 6]
# BLOCK_SIZE = [[64, 64], [64, 128], [128, 64], [128, 128]]
BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
# For test
def torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""This function performs fused moe with block-wise quantization using
native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_int8(a, block_k)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
block_shape,
output_dtype=a.dtype)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_int8(
act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
block_shape,
output_dtype=a.dtype)
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
@pytest.fixture(autouse=True, scope="module")
def setup_cuda():
"""Sets the default CUDA device for all tests in this module."""
torch.set_default_device("cuda")
@pytest.mark.parametrize(("M", "N", "K"), MNK_FACTORS)
@pytest.mark.parametrize("E", E)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("block_size", BLOCK_SIZE)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_w8a8_block_int8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
"""Tests the fused_moe kernel with W8A8 INT8 block quantization against a
native torch reference."""
torch.manual_seed(seed)
a = torch.randn((M, K), dtype=dtype) / 10
score = torch.randn((M, E), dtype=dtype)
_, w1, w1_s, _, w2, w2_s = make_test_weights(E,
N,
K,
dtype,
torch.int8,
per_act_token_quant=False,
block_shape=block_size)
# Set the context to avoid lots of warning spam.
with set_current_vllm_config(vllm_config):
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_int8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk,
block_size)
# Check results
torch.testing.assert_close(out, ref_out, atol=0.065, rtol=0.065)