vllm/tests/lora/test_lora_allowed_token_ids.py

136 lines
4.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.config import (CacheConfig, DeviceConfig, LoRAConfig, ModelConfig,
VllmConfig)
from vllm.lora.request import LoRARequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import init_tokenizer_from_configs
from vllm.v1.engine.processor import Processor
def test_allowed_token_ids_with_lora_vocab(llama_2_7b_base_huggingface_id,
sql_lora_files):
"""
Test that we properly resolve the range of allowed token ids for lora
adapters that define additional tokens.
"""
# Setup a base model compatible with the sql_lora_files adapter and
# a known number of tokens in the base model.
model_config = ModelConfig(
model=llama_2_7b_base_huggingface_id,
tokenizer=llama_2_7b_base_huggingface_id,
tokenizer_mode="auto",
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
device_config=DeviceConfig(),
lora_config=LoRAConfig(),
)
tokenizer = init_tokenizer_from_configs(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
lora_config=vllm_config.lora_config)
processor = Processor(vllm_config, tokenizer)
lora_request = LoRARequest("1", 1, str(sql_lora_files))
request_id = "1"
prompt = "a prompt"
# tokens added in the lora adapter should not raise an error
lora_token_ids = [32000, 32001, 32002, 32003]
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=lora_token_ids),
lora_request=lora_request)
# tokens in the base model should not raise an error
base_token_ids = [1000, 1001, 1002, 1003]
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=base_token_ids),
lora_request=lora_request)
# tokens not in the lora adapter should raise an error
invalid_token_ids = [35000, 35001, 35002, 35003]
with pytest.raises(ValueError):
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=invalid_token_ids),
lora_request=lora_request)
# tokens in the lora adapter with no lora request should raise an error
with pytest.raises(ValueError):
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=lora_token_ids),
)
def test_allowed_token_ids_with_lora_adapter_no_vocab(
qwen25vl_base_huggingface_id, qwen25vl_lora_files):
"""
Test that we properly resolve the range of allowed token ids for lora
adapters that do not define additional tokens.
"""
# Setup a base model compatible with the qwen25vl_lora_files adapter and
# a known number of tokens in the base model.
model_config = ModelConfig(
model=qwen25vl_base_huggingface_id,
tokenizer=qwen25vl_base_huggingface_id,
tokenizer_mode="auto",
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
device_config=DeviceConfig(),
lora_config=LoRAConfig(),
)
tokenizer = init_tokenizer_from_configs(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
lora_config=vllm_config.lora_config)
processor = Processor(vllm_config, tokenizer)
lora_request = LoRARequest("1", 1, str(qwen25vl_lora_files))
request_id = "1"
prompt = "a prompt"
# tokens in the base model should not raise an error
base_token_ids = [1000, 1001, 1002, 1003]
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=base_token_ids),
lora_request=lora_request)
# tokens in the base model with no lora request should not raise an error
base_token_ids = [1000, 1001, 1002, 1003]
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=base_token_ids),
)
# tokens not in the base model should raise an error
invalid_token_ids = [200000, 200001, 200002, 200003]
with pytest.raises(ValueError):
processor.process_inputs(
request_id,
prompt,
params=SamplingParams(allowed_token_ids=invalid_token_ids),
lora_request=lora_request)