mirror of https://github.com/vllm-project/vllm.git
61 lines
2.2 KiB
Python
61 lines
2.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Tests for phi4mm's multimodal preprocessing kwargs."""
|
|
import pytest
|
|
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
|
|
from ....conftest import ImageTestAssets
|
|
from ...utils import build_model_context
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["microsoft/Phi-4-multimodal-instruct"])
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("mm_processor_kwargs", "expected_toks_per_img"),
|
|
[
|
|
({"dynamic_hd": 4}, 1329),
|
|
({"dynamic_hd": 16}, 4433),
|
|
# the default num_crops of phi-4-multimodal is 36
|
|
({}, 9585),
|
|
])
|
|
# yapf: enable
|
|
@pytest.mark.parametrize("num_imgs", [1, 2])
|
|
@pytest.mark.parametrize("kwargs_on_init", [True, False])
|
|
def test_processor_override(
|
|
image_assets: ImageTestAssets,
|
|
model_id: str,
|
|
mm_processor_kwargs: dict[str, int],
|
|
expected_toks_per_img: int,
|
|
num_imgs: int,
|
|
kwargs_on_init: bool,
|
|
):
|
|
"""Ensure Phi4MMMultiModalProcessor handles dynamic_hd properly."""
|
|
# Avoid initializing CUDA early
|
|
from vllm.model_executor.models.phi4mm import _IMAGE_PLACEHOLDER_TOKEN_ID
|
|
|
|
ctx = build_model_context(
|
|
model_id,
|
|
mm_processor_kwargs=mm_processor_kwargs if kwargs_on_init else None,
|
|
limit_mm_per_prompt={"image": num_imgs},
|
|
)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
|
|
hf_processor_mm_kwargs = {} if kwargs_on_init else mm_processor_kwargs
|
|
|
|
# Build the image str / prompt based on the number of images we pass
|
|
img_str = "".join([f"<|image_{idx}|>\n" for idx in range(1, num_imgs + 1)])
|
|
prompt = f"<|user|>\n{img_str}<|end|>\n<|assistant|>\n"
|
|
|
|
image_size = ctx.get_hf_config(
|
|
).embd_layer["image_embd_layer"]["crop_size"]
|
|
dummy_image_size = (image_size * 7, image_size * 7)
|
|
dummy_image = image_assets[0].pil_image.resize(dummy_image_size)
|
|
mm_data = {"image": [dummy_image] * num_imgs}
|
|
|
|
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
|
|
|
|
# Ensure we have the right number of placeholders per num_crops size
|
|
img_tok_count = processed_inputs["prompt_token_ids"].count(
|
|
_IMAGE_PLACEHOLDER_TOKEN_ID)
|
|
assert img_tok_count == expected_toks_per_img * num_imgs
|