vllm/tests/v1/entrypoints/openai/test_multi_api_servers.py

299 lines
9.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import os
import re
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
MODEL_NAME = "ibm-research/PowerMoE-3b"
DP_SIZE = os.getenv("DP_SIZE", "1")
def get_prometheus_metrics(
server: RemoteOpenAIServer) -> dict[str, dict[str, float]]:
"""Fetch and parse Prometheus metrics from the /metrics endpoint.
Returns:
Dict mapping metric names to their values grouped by labels.
For example: {"vllm:request_success": {
"engine=0": 5.0, "engine=1": 3.0}
}
"""
try:
response = requests.get(server.url_for("metrics"), timeout=10)
response.raise_for_status()
metrics: dict[str, dict[str, float]] = {}
# Regex patterns for Prometheus metrics
metric_with_labels = re.compile(
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\{([^}]*)\}\s+([\d\.\-\+e]+)$')
metric_simple = re.compile(
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\s+([\d\.\-\+e]+)$')
for line in response.text.split('\n'):
line = line.strip()
# Skip comments and empty lines
if not line or line.startswith('#'):
continue
# Try to match metric with labels first
match = metric_with_labels.match(line)
if match:
metric_name, labels_part, value_str = match.groups()
try:
value = float(value_str)
if metric_name not in metrics:
metrics[metric_name] = {}
metrics[metric_name][f'{{{labels_part}}}'] = value
except ValueError:
continue
else:
# Try simple metric without labels
match = metric_simple.match(line)
if match:
metric_name, value_str = match.groups()
try:
value = float(value_str)
if metric_name not in metrics:
metrics[metric_name] = {}
metrics[metric_name][''] = value
except ValueError:
continue
return metrics
except Exception as e:
pytest.fail(f"Failed to fetch Prometheus metrics: {e}")
return {}
def get_engine_request_counts(
metrics: dict[str, dict[str, float]]) -> dict[str, float]:
"""Extract request counts per engine from Prometheus metrics.
Returns:
Dict mapping engine indices to request counts.
For example: {"0": 15.0, "1": 12.0}
"""
engine_counts = {}
# Look for request success metrics with engine labels
success_metrics = metrics.get("vllm:request_success_total", {})
engine_pattern = re.compile(r'engine="([^"]*)"')
for labels, count in success_metrics.items():
# Extract engine ID from labels using regex
match = engine_pattern.search(labels)
if match:
engine_id = match.group(1)
if engine_id not in engine_counts:
engine_counts[engine_id] = 0.0
engine_counts[engine_id] += count
return engine_counts
def check_request_balancing(server: RemoteOpenAIServer):
"""Check request balancing via Prometheus metrics if DP_SIZE > 1.
Args:
server: The RemoteOpenAIServer instance
"""
dp_size = int(DP_SIZE)
if dp_size <= 1:
return
# Get metrics after all requests are completed
metrics = get_prometheus_metrics(server)
engine_counts = get_engine_request_counts(metrics)
# Check that multiple engines received requests
engines_with_requests = [
engine for engine, count in engine_counts.items() if count > 0
]
assert len(engines_with_requests) == dp_size, (
f"Expected requests to be distributed across multiple engines,"
f" but only engine(s) {engines_with_requests} received "
f"requests. Engine counts: {engine_counts}")
# Verify that the load is reasonably balanced
# (no engine should handle all requests)
total_requests = sum(engine_counts.values())
for count in engine_counts.values():
assert count > total_requests // (dp_size + 1), (
f"requests are imbalanced: {engine_counts}")
@pytest.fixture(scope="module")
def default_server_args():
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--max-num-seqs",
"128",
"--enforce-eager",
"--api-server-count",
"4",
"--data_parallel_size",
DP_SIZE,
]
@pytest.fixture(scope="module")
def server(default_server_args):
with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_single_completion(client: openai.AsyncOpenAI,
server: RemoteOpenAIServer,
model_name: str) -> None:
async def make_request():
completion = await client.completions.create(
model=model_name,
prompt="Hello, my name is",
max_tokens=10,
temperature=1.0)
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
choice = completion.choices[0]
# The exact number of tokens can vary slightly with temperature=1.0,
# so we check for a reasonable minimum length.
assert len(choice.text) >= 1
# Finish reason might not always be 'length' if the model finishes early
# or due to other reasons, especially with high temperature.
# So, we'll accept 'length' or 'stop'.
assert choice.finish_reason in ("length", "stop")
# Token counts can also vary, so we check they are positive.
assert completion.usage.completion_tokens > 0
assert completion.usage.prompt_tokens > 0
assert completion.usage.total_tokens > 0
return completion
# Test single request
result = await make_request()
assert result is not None
await asyncio.sleep(0.5)
# Send two bursts of requests
num_requests = 100
tasks = [make_request() for _ in range(num_requests)]
results = await asyncio.gather(*tasks)
assert len(results) == num_requests
assert all(completion is not None for completion in results)
await asyncio.sleep(0.5)
tasks = [make_request() for _ in range(num_requests)]
results = await asyncio.gather(*tasks)
assert len(results) == num_requests
assert all(completion is not None for completion in results)
# Check request balancing via Prometheus metrics if DP_SIZE > 1
check_request_balancing(server)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_completion_streaming(client: openai.AsyncOpenAI,
server: RemoteOpenAIServer,
model_name: str) -> None:
prompt = "What is an LLM?"
async def make_streaming_request():
# Perform a non-streaming request to get the expected full output
single_completion = await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
)
single_output = single_completion.choices[0].text
# Perform the streaming request
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True)
chunks: list[str] = []
finish_reason_count = 0
last_chunk = None
async for chunk in stream:
chunks.append(chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
last_chunk = chunk # Keep track of the last chunk
# finish reason should only return in the last block for OpenAI API
assert finish_reason_count == 1, (
"Finish reason should appear exactly once.")
assert last_chunk is not None, (
"Stream should have yielded at least one chunk.")
assert last_chunk.choices[
0].finish_reason == "length", "Finish reason should be 'length'."
# Check that the combined text matches the non-streamed version.
assert "".join(
chunks
) == single_output, "Streamed output should match non-streamed output."
return True # Indicate success for this request
# Test single request
result = await make_streaming_request()
assert result is not None
await asyncio.sleep(0.5)
# Send two bursts of requests
num_requests = 100
tasks = [make_streaming_request() for _ in range(num_requests)]
results = await asyncio.gather(*tasks)
assert len(
results
) == num_requests, f"Expected {num_requests} results, got {len(results)}"
assert all(results), "Not all streaming requests completed successfully."
await asyncio.sleep(0.5)
tasks = [make_streaming_request() for _ in range(num_requests)]
results = await asyncio.gather(*tasks)
assert len(
results
) == num_requests, f"Expected {num_requests} results, got {len(results)}"
assert all(results), "Not all streaming requests completed successfully."
# Check request balancing via Prometheus metrics if DP_SIZE > 1
check_request_balancing(server)