mirror of https://github.com/vllm-project/vllm.git
118 lines
3.8 KiB
Python
118 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
from torch import Generator
|
|
|
|
from vllm.platforms import current_platform
|
|
from vllm.v1.sample.ops.topk_topp_sampler import (apply_top_k_top_p,
|
|
is_flashinfer_available)
|
|
|
|
DEVICE = current_platform.device_type
|
|
|
|
BATCH_SIZE = 1024
|
|
VOCAB_SIZE = 128 * 1024
|
|
|
|
FLASHINFER_ENABLED = current_platform.is_cuda() and is_flashinfer_available
|
|
if is_flashinfer_available:
|
|
from flashinfer.sampling import top_k_renorm_probs, top_p_renorm_probs
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def reset_default_device():
|
|
"""
|
|
Explicitly set the default device, which can affect subsequent tests.
|
|
Adding this fixture helps avoid this problem.
|
|
"""
|
|
original_device = torch.get_default_device()
|
|
yield
|
|
torch.set_default_device(original_device)
|
|
|
|
|
|
def test_topk_impl_equivalence():
|
|
|
|
torch.set_default_device(DEVICE)
|
|
generator = Generator(device=DEVICE).manual_seed(33)
|
|
|
|
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
|
|
|
# Random top-k values between 1 and 9.
|
|
k = torch.randint(1, 10, (BATCH_SIZE, ), generator=generator)
|
|
|
|
# Set k=vocab_size for ~50% of requests in the batch (top-k disabled).
|
|
k.masked_fill_(
|
|
torch.randint(0, 2, (BATCH_SIZE, ), generator=generator, dtype=bool),
|
|
VOCAB_SIZE)
|
|
|
|
# Top-k only implementation
|
|
result1 = apply_top_k_top_p(logits=logits.clone(), k=k, p=None)
|
|
|
|
# Top-p + top-k
|
|
no_op_top_p = torch.tensor([1.0])
|
|
result2 = apply_top_k_top_p(logits=logits.clone(), k=k, p=no_op_top_p)
|
|
|
|
assert torch.allclose(result1, result2)
|
|
|
|
|
|
def test_flashinfer_sampler():
|
|
'''
|
|
This test verifies that the FlashInfer top-k and top-p sampling
|
|
implementation produces the same results as the Python implementation.
|
|
|
|
NOTE: FlashInfer did not directly expose an interface for fused top-k and
|
|
top-p prob renorm (it did provide fused sampling but we cannot compare
|
|
sampling results due to randomness), so we will compare the probability
|
|
renormed consequently by top-k and then top-p of FlashInfer implementation.
|
|
'''
|
|
|
|
if not FLASHINFER_ENABLED:
|
|
pytest.skip(
|
|
"FlashInfer not installed or not available on this platform.")
|
|
|
|
torch.set_default_device(DEVICE)
|
|
generator = Generator(device=DEVICE).manual_seed(42)
|
|
|
|
# Generate random logits
|
|
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
|
|
|
# Generate various top-k and top-p values
|
|
k_values = torch.randint(1, 1000, (BATCH_SIZE, ), generator=generator)
|
|
p_values = torch.rand(
|
|
(BATCH_SIZE, ), generator=generator) * 0.5 + 0.5 # range in [0.5, 1.0]
|
|
|
|
# Sometimes disable top-k (k=vocab_size)
|
|
k_values.masked_fill_(
|
|
torch.randint(0,
|
|
2, (BATCH_SIZE, ),
|
|
generator=generator,
|
|
dtype=torch.bool), VOCAB_SIZE)
|
|
|
|
# Sometimes disable top-p (p=1.0)
|
|
p_values.masked_fill_(
|
|
torch.randint(0,
|
|
2, (BATCH_SIZE, ),
|
|
generator=generator,
|
|
dtype=torch.bool), 1.0)
|
|
|
|
python_logits = apply_top_k_top_p(
|
|
logits=logits.clone(),
|
|
k=k_values,
|
|
p=p_values,
|
|
)
|
|
python_probs = torch.softmax(python_logits, dim=-1)
|
|
|
|
# FlashInfer only exposed renorm interfaces for probs so convert first
|
|
flashinfer_probs = torch.softmax(logits.clone(), dim=-1)
|
|
flashinfer_probs = top_k_renorm_probs(
|
|
probs=flashinfer_probs,
|
|
top_k=k_values,
|
|
)
|
|
flashinfer_probs = top_p_renorm_probs(
|
|
probs=flashinfer_probs,
|
|
top_p=p_values,
|
|
)
|
|
|
|
# Compare the results
|
|
assert torch.allclose(python_probs, flashinfer_probs, atol=2e-2), \
|
|
"FlashInfer and Python sampling implementations do not match!"
|