vllm/tests/lora/test_worker.py

102 lines
3.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import random
import tempfile
from typing import Union
from unittest.mock import patch
import vllm.envs as envs
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ParallelConfig, SchedulerConfig,
VllmConfig)
from vllm.lora.models import LoRAMapping
from vllm.lora.request import LoRARequest
from vllm.v1.worker.gpu_worker import Worker as V1Worker
from vllm.worker.worker import Worker
@patch.dict(os.environ, {"RANK": "0"})
def test_worker_apply_lora(sql_lora_files):
def set_active_loras(worker: Union[Worker, V1Worker],
lora_requests: list[LoRARequest]):
lora_mapping = LoRAMapping([], [])
if isinstance(worker, Worker):
# v0 case
worker.model_runner.set_active_loras(lora_requests, lora_mapping)
else:
# v1 case
worker.model_runner.lora_manager.set_active_adapters(
lora_requests, lora_mapping)
worker_cls = V1Worker if envs.VLLM_USE_V1 else Worker
vllm_config = VllmConfig(
model_config=ModelConfig(
"meta-llama/Llama-2-7b-hf",
task="auto",
tokenizer="meta-llama/Llama-2-7b-hf",
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
revision=None,
enforce_eager=True,
),
load_config=LoadConfig(
download_dir=None,
load_format="dummy",
),
parallel_config=ParallelConfig(
pipeline_parallel_size=1,
tensor_parallel_size=1,
data_parallel_size=1,
),
scheduler_config=SchedulerConfig("generate", 32, 32, 32),
device_config=DeviceConfig("cuda"),
cache_config=CacheConfig(
block_size=16,
gpu_memory_utilization=1.0,
swap_space=0,
cache_dtype="auto",
),
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32,
max_loras=32),
)
worker = worker_cls(
vllm_config=vllm_config,
local_rank=0,
rank=0,
distributed_init_method=f"file://{tempfile.mkstemp()[1]}",
)
worker.init_device()
worker.load_model()
set_active_loras(worker, [])
assert worker.list_loras() == set()
n_loras = 32
lora_requests = [
LoRARequest(str(i + 1), i + 1, sql_lora_files) for i in range(n_loras)
]
set_active_loras(worker, lora_requests)
assert worker.list_loras() == {
lora_request.lora_int_id
for lora_request in lora_requests
}
for i in range(32):
random.seed(i)
iter_lora_requests = random.choices(lora_requests,
k=random.randint(1, n_loras))
random.shuffle(iter_lora_requests)
iter_lora_requests = iter_lora_requests[:-random.randint(0, n_loras)]
set_active_loras(worker, lora_requests)
assert worker.list_loras().issuperset(
{lora_request.lora_int_id
for lora_request in iter_lora_requests})