vllm/tests/multimodal/test_hasher.py

63 lines
2.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from pathlib import Path
import numpy as np
import pytest
import torch
from PIL import Image, ImageDraw
from vllm.multimodal.hasher import MultiModalHasher
ASSETS_DIR = Path(__file__).parent / "assets"
assert ASSETS_DIR.exists()
# NOTE: Images that are the same visually are allowed to have the same hash
@pytest.mark.parametrize("mode_pair", [("1", "L"), ("RGBA", "CMYK")])
def test_hash_collision_image_mode(mode_pair):
mode1, mode2 = mode_pair
image1 = Image.new(mode1, size=(10, 10), color=1)
image2 = Image.new(mode2, size=(10, 10), color=1)
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_image_palette():
# These images differ only in Image.palette._palette
image1 = Image.open(ASSETS_DIR / "image1.png")
image2 = Image.open(ASSETS_DIR / "image2.png")
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_image_transpose():
image1 = Image.new("1", size=(10, 20))
ImageDraw.Draw(image1).line([(0, 0), (10, 0)])
image2 = Image.new("1", size=(20, 10))
ImageDraw.Draw(image2).line([(0, 0), (0, 10)])
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_tensor_shape():
# The hash should be different though the data is the same when flattened
arr1 = torch.zeros((5, 10, 20, 3))
arr2 = torch.zeros((10, 20, 5, 3))
hasher = MultiModalHasher
assert hasher.hash_kwargs(data=arr1) != hasher.hash_kwargs(data=arr2)
def test_hash_collision_array_shape():
# The hash should be different though the data is the same when flattened
arr1 = np.zeros((5, 10, 20, 3))
arr2 = np.zeros((10, 20, 5, 3))
hasher = MultiModalHasher
assert hasher.hash_kwargs(data=arr1) != hasher.hash_kwargs(data=arr2)