mirror of https://github.com/vllm-project/vllm.git
195 lines
5.7 KiB
Python
195 lines
5.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
Set up this example by starting a vLLM OpenAI-compatible server with tool call
|
|
options enabled. For example:
|
|
|
|
IMPORTANT: for mistral, you must use one of the provided mistral tool call
|
|
templates, or your own - the model default doesn't work for tool calls with vLLM
|
|
See the vLLM docs on OpenAI server & tool calling for more details.
|
|
|
|
vllm serve mistralai/Mistral-7B-Instruct-v0.3 \
|
|
--chat-template examples/tool_chat_template_mistral.jinja \
|
|
--enable-auto-tool-choice --tool-call-parser mistral
|
|
|
|
OR
|
|
vllm serve NousResearch/Hermes-2-Pro-Llama-3-8B \
|
|
--chat-template examples/tool_chat_template_hermes.jinja \
|
|
--enable-auto-tool-choice --tool-call-parser hermes
|
|
"""
|
|
|
|
import json
|
|
from typing import Any
|
|
|
|
from openai import OpenAI
|
|
|
|
# Modify OpenAI's API key and API base to use vLLM's API server.
|
|
openai_api_key = "EMPTY"
|
|
openai_api_base = "http://localhost:8000/v1"
|
|
|
|
properties = {
|
|
"city": {
|
|
"type": "string",
|
|
"description": "The city to find the weather for, e.g. 'San Francisco'",
|
|
},
|
|
"state": {
|
|
"type": "string",
|
|
"description": "the two-letter abbreviation for the state that the city is"
|
|
" in, e.g. 'CA' which would mean 'California'",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"description": "The unit to fetch the temperature in",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
}
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": properties,
|
|
"required": ["city", "state", "unit"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "Hi! How are you doing today?"},
|
|
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
|
|
{
|
|
"role": "user",
|
|
"content": (
|
|
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
|
|
),
|
|
},
|
|
]
|
|
|
|
|
|
def get_current_weather(city: str, state: str, unit: "str"):
|
|
return (
|
|
"The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
|
|
"partly cloudly, with highs in the 90's."
|
|
)
|
|
|
|
|
|
def handle_tool_calls_stream(
|
|
client: OpenAI,
|
|
messages: list[dict[str, str]],
|
|
model: str,
|
|
tools: list[dict[str, Any]],
|
|
) -> list[Any]:
|
|
tool_calls_stream = client.chat.completions.create(
|
|
messages=messages, model=model, tools=tools, stream=True
|
|
)
|
|
chunks = []
|
|
print("chunks: ")
|
|
for chunk in tool_calls_stream:
|
|
chunks.append(chunk)
|
|
if chunk.choices[0].delta.tool_calls:
|
|
print(chunk.choices[0].delta.tool_calls[0])
|
|
else:
|
|
print(chunk.choices[0].delta)
|
|
return chunks
|
|
|
|
|
|
def handle_tool_calls_arguments(chunks: list[Any]) -> list[str]:
|
|
arguments = []
|
|
tool_call_idx = -1
|
|
print("arguments: ")
|
|
for chunk in chunks:
|
|
if chunk.choices[0].delta.tool_calls:
|
|
tool_call = chunk.choices[0].delta.tool_calls[0]
|
|
if tool_call.index != tool_call_idx:
|
|
if tool_call_idx >= 0:
|
|
print(f"streamed tool call arguments: {arguments[tool_call_idx]}")
|
|
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
|
|
arguments.append("")
|
|
if tool_call.id:
|
|
print(f"streamed tool call id: {tool_call.id} ")
|
|
|
|
if tool_call.function:
|
|
if tool_call.function.name:
|
|
print(f"streamed tool call name: {tool_call.function.name}")
|
|
|
|
if tool_call.function.arguments:
|
|
arguments[tool_call_idx] += tool_call.function.arguments
|
|
|
|
return arguments
|
|
|
|
|
|
def main():
|
|
# Initialize OpenAI client
|
|
client = OpenAI(
|
|
# defaults to os.environ.get("OPENAI_API_KEY")
|
|
api_key=openai_api_key,
|
|
base_url=openai_api_base,
|
|
)
|
|
|
|
# Get available models and select one
|
|
models = client.models.list()
|
|
model = models.data[0].id
|
|
|
|
chat_completion = client.chat.completions.create(
|
|
messages=messages, model=model, tools=tools
|
|
)
|
|
|
|
print("-" * 70)
|
|
print("Chat completion results:")
|
|
print(chat_completion)
|
|
print("-" * 70)
|
|
|
|
# Stream tool calls
|
|
chunks = handle_tool_calls_stream(client, messages, model, tools)
|
|
print("-" * 70)
|
|
|
|
# Handle arguments from streamed tool calls
|
|
arguments = handle_tool_calls_arguments(chunks)
|
|
|
|
if len(arguments):
|
|
print(f"streamed tool call arguments: {arguments[-1]}\n")
|
|
|
|
print("-" * 70)
|
|
|
|
# Add tool call results to the conversation
|
|
messages.append(
|
|
{
|
|
"role": "assistant",
|
|
"tool_calls": chat_completion.choices[0].message.tool_calls,
|
|
}
|
|
)
|
|
|
|
# Now, simulate a tool call
|
|
available_tools = {"get_current_weather": get_current_weather}
|
|
|
|
completion_tool_calls = chat_completion.choices[0].message.tool_calls
|
|
for call in completion_tool_calls:
|
|
tool_to_call = available_tools[call.function.name]
|
|
args = json.loads(call.function.arguments)
|
|
result = tool_to_call(**args)
|
|
print("tool_to_call result: ", result)
|
|
messages.append(
|
|
{
|
|
"role": "tool",
|
|
"content": result,
|
|
"tool_call_id": call.id,
|
|
"name": call.function.name,
|
|
}
|
|
)
|
|
|
|
chat_completion_2 = client.chat.completions.create(
|
|
messages=messages, model=model, tools=tools, stream=False
|
|
)
|
|
print("Chat completion2 results:")
|
|
print(chat_completion_2)
|
|
print("-" * 70)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|