mirror of https://github.com/vllm-project/vllm.git
170 lines
6.0 KiB
Python
170 lines
6.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import os
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.platforms import current_platform
|
|
|
|
from ....utils import large_gpu_mark
|
|
from ...registry import HF_EXAMPLE_MODELS
|
|
from ...utils import check_logprobs_close
|
|
|
|
# These have unsupported head_dim for FA. We do not
|
|
# not have a clean way to fall back, so we fail with
|
|
# a clear msg when it happens.
|
|
# https://github.com/vllm-project/vllm/issues/14524
|
|
REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
|
|
|
|
# This list contains the model that are using AITER kernel.
|
|
# Skip model that are not using AITER tests.
|
|
# When more AITER kernels are added, this list will not be
|
|
# needed as all the models will be calling AITER kernels
|
|
# in parts of the operators
|
|
AITER_MODEL_LIST = [
|
|
"meta-llama/Llama-3.2-1B-Instruct",
|
|
"openbmb/MiniCPM3-4B",
|
|
"Qwen/Qwen-7B-Chat",
|
|
"Qwen/Qwen2.5-0.5B-Instruct",
|
|
"TitanML/tiny-mixtral",
|
|
"Qwen/Qwen3-8B",
|
|
]
|
|
|
|
|
|
# @maybe_test_rocm_aiter
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
pytest.param(
|
|
"bigscience/bloom-560m", # bloom - testing alibi slopes
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"openai-community/gpt2", # gpt2
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param("Milos/slovak-gpt-j-405M"), # gptj
|
|
pytest.param("bigcode/tiny_starcoder_py"), # gpt_bigcode
|
|
pytest.param("EleutherAI/pythia-70m"), # gpt_neox
|
|
pytest.param(
|
|
"google/gemma-1.1-2b-it", # gemma
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"THUDM/chatglm3-6b", # chatglm (text-only)
|
|
),
|
|
pytest.param(
|
|
"meta-llama/Llama-3.2-1B-Instruct", # llama
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"openbmb/MiniCPM3-4B",
|
|
# fused_moe not supported on CPU
|
|
marks=[pytest.mark.core_model,
|
|
large_gpu_mark(min_gb=32)],
|
|
),
|
|
pytest.param(
|
|
"facebook/opt-125m", # opt
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"microsoft/phi-2", # phi
|
|
marks=[pytest.mark.core_model],
|
|
),
|
|
pytest.param(
|
|
"Qwen/Qwen-7B-Chat", # qwen (text-only)
|
|
),
|
|
pytest.param(
|
|
"Qwen/Qwen2.5-0.5B-Instruct", # qwen2
|
|
marks=[pytest.mark.core_model],
|
|
),
|
|
pytest.param(
|
|
"Qwen/Qwen3-8B", # qwen (text-only)
|
|
),
|
|
pytest.param("stabilityai/stablelm-3b-4e1t"), # stablelm
|
|
pytest.param("bigcode/starcoder2-3b"), # starcoder2
|
|
pytest.param(
|
|
"TitanML/tiny-mixtral", # mixtral
|
|
)
|
|
])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize(
|
|
"use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False])
|
|
def test_models(hf_runner, vllm_runner, example_prompts, model: str,
|
|
max_tokens: int, num_logprobs: int, use_rocm_aiter: bool,
|
|
monkeypatch) -> None:
|
|
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
|
model_info.check_available_online(on_fail="skip")
|
|
model_info.check_transformers_version(on_fail="skip")
|
|
|
|
if model in REQUIRES_V0:
|
|
monkeypatch.setenv("VLLM_USE_V1", "0")
|
|
|
|
if use_rocm_aiter and (model in AITER_MODEL_LIST):
|
|
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
|
|
elif use_rocm_aiter and model not in AITER_MODEL_LIST:
|
|
# Skip model that are not using AITER tests.
|
|
# When more AITER kernels are added, this list will not be
|
|
# needed as all the models will be calling AITER kernels
|
|
# in parts of the operators
|
|
pytest.skip(f"Skipping '{model}' model test with AITER kernel.")
|
|
|
|
use_prompt_embeds = os.getenv("VLLM_USE_V1") == "0"
|
|
|
|
with hf_runner(model) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy_logprobs_limit(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
prompt_embeds: Optional[list[torch.Tensor]] = ([] if use_prompt_embeds
|
|
else None)
|
|
|
|
prompt_token_ids = []
|
|
for prompt in example_prompts:
|
|
token_ids = hf_model.tokenizer(prompt,
|
|
return_tensors="pt").input_ids.to(
|
|
hf_model.model.device)
|
|
prompt_token_ids.append(token_ids)
|
|
if prompt_embeds is not None:
|
|
prompt_embeds.append(hf_model.model.get_input_embeddings()(
|
|
token_ids).squeeze(0))
|
|
|
|
with vllm_runner(
|
|
model,
|
|
tokenizer_name=model_info.tokenizer or model,
|
|
tokenizer_mode=model_info.tokenizer_mode,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
max_num_seqs=2,
|
|
enable_prompt_embeds=use_prompt_embeds,
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
if prompt_embeds is not None:
|
|
vllm_outputs_from_embeds = vllm_model.generate_greedy_logprobs(
|
|
prompt_embeds, max_tokens, num_logprobs)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
if prompt_embeds is not None:
|
|
check_logprobs_close(
|
|
outputs_0_lst=vllm_outputs,
|
|
outputs_1_lst=vllm_outputs_from_embeds,
|
|
name_0="vllm",
|
|
name_1="vllm_from_embeds",
|
|
)
|
|
|
|
if use_rocm_aiter:
|
|
# this is to ensure that vllm engine
|
|
# has deallocated the memory before running the next
|
|
# unit tests. On ROCm, when using AITER
|
|
# the memory might not be deallocated completely
|
|
# before running the next test case
|
|
torch.cuda.synchronize()
|