vllm/tests/models/multimodal/generation/test_ultravox.py

178 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
from typing import Any
import numpy as np
import pytest
import pytest_asyncio
from transformers import AutoTokenizer
from ....conftest import AUDIO_ASSETS, AudioTestAssets, VllmRunner
from ....utils import RemoteOpenAIServer
from ...registry import HF_EXAMPLE_MODELS
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
AUDIO_PROMPTS = AUDIO_ASSETS.prompts({
"mary_had_lamb":
"Transcribe this into English.",
"winning_call":
"What is happening in this audio clip?",
})
MULTI_AUDIO_PROMPT = "Describe each of the audios above."
AudioTuple = tuple[np.ndarray, int]
VLLM_PLACEHOLDER = "<|audio|>"
HF_PLACEHOLDER = "<|audio|>"
CHUNKED_PREFILL_KWARGS = {
"enable_chunked_prefill": True,
"max_num_seqs": 2,
# Use a very small limit to exercise chunked prefill.
"max_num_batched_tokens": 16
}
def params_kwargs_to_cli_args(params_kwargs: dict[str, Any]) -> list[str]:
"""Convert kwargs to CLI args."""
args = []
for key, value in params_kwargs.items():
if isinstance(value, bool):
if value:
args.append(f"--{key.replace('_','-')}")
else:
args.append(f"--{key.replace('_','-')}={value}")
return args
@pytest.fixture(params=[
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def server(request, audio_assets: AudioTestAssets):
args = [
"--dtype", "bfloat16", "--max-model-len", "4096", "--enforce-eager",
"--limit-mm-per-prompt",
json.dumps({"audio": len(audio_assets)}), "--trust-remote-code"
] + params_kwargs_to_cli_args(request.param)
with RemoteOpenAIServer(MODEL_NAME,
args,
env_dict={"VLLM_AUDIO_FETCH_TIMEOUT":
"30"}) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
def _get_prompt(audio_count, question, placeholder):
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
placeholder = f"{placeholder}\n" * audio_count
return tokenizer.apply_chat_template([{
'role': 'user',
'content': f"{placeholder}{question}"
}],
tokenize=False,
add_generation_prompt=True)
def run_multi_audio_test(
vllm_runner: type[VllmRunner],
prompts_and_audios: list[tuple[str, list[AudioTuple]]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
**kwargs,
):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
model_info.check_transformers_version(on_fail="skip")
with vllm_runner(model,
dtype=dtype,
enforce_eager=True,
limit_mm_per_prompt={
"audio":
max((len(audio) for _, audio in prompts_and_audios))
},
**kwargs) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
[prompt for prompt, _ in prompts_and_audios],
max_tokens,
num_logprobs=num_logprobs,
audios=[audios for _, audios in prompts_and_audios])
# The HuggingFace model doesn't support multiple audios yet, so
# just assert that some tokens were generated.
assert all(tokens for tokens, *_ in vllm_outputs)
@pytest.mark.core_model
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("vllm_kwargs", [
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def test_models_with_multiple_audios(vllm_runner,
audio_assets: AudioTestAssets, dtype: str,
max_tokens: int, num_logprobs: int,
vllm_kwargs: dict) -> None:
vllm_prompt = _get_prompt(len(audio_assets), MULTI_AUDIO_PROMPT,
VLLM_PLACEHOLDER)
run_multi_audio_test(
vllm_runner,
[(vllm_prompt, [audio.audio_and_sample_rate
for audio in audio_assets])],
MODEL_NAME,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
**vllm_kwargs,
)
@pytest.mark.asyncio
async def test_online_serving(client, audio_assets: AudioTestAssets):
"""Exercises online serving with/without chunked prefill enabled."""
messages = [{
"role":
"user",
"content": [
*[{
"type": "audio_url",
"audio_url": {
"url": audio.url
}
} for audio in audio_assets],
{
"type":
"text",
"text":
f"What's happening in these {len(audio_assets)} audio clips?"
},
],
}]
chat_completion = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
max_tokens=10)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"