vllm/tests/models/multimodal/processing/test_minimax_vl_01.py

100 lines
3.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from PIL import Image
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.parse import ImageSize
from vllm.multimodal.processing import BaseMultiModalProcessor
from ....conftest import ImageTestAssets
from ...utils import build_model_context
@pytest.mark.parametrize("model_id", ["MiniMaxAI/MiniMax-VL-01"])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_override(
image_assets: ImageTestAssets,
model_id: str,
num_imgs: int,
):
ctx = build_model_context(
model_id,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
prompt = "<image>" * num_imgs
image = Image.new("RGB", size=(364, 364))
mm_data = {"image": [image] * num_imgs}
processed_inputs = processor.apply(prompt, mm_data, {})
image_placeholders = processed_inputs["mm_placeholders"]["image"]
assert len(image_placeholders) == num_imgs
def _validate_image_prompt_replacements_one(
processor: BaseMultiModalProcessor,
num_imgs: int,
failed_size_excs: list[tuple[ImageSize, Exception]],
image_size: ImageSize,
) -> None:
prompt = "<image>" * num_imgs
image = Image.new("RGB", size=image_size)
mm_data = {"image": [image] * num_imgs}
try:
processed_inputs = processor.apply(prompt, mm_data, {})
image_placeholders = processed_inputs["mm_placeholders"]["image"]
assert len(image_placeholders) == num_imgs
except Exception as exc:
failed_size_excs.append((image_size, exc))
def _test_image_prompt_replacements(
processor,
*,
num_imgs: int,
image_sizes: list[ImageSize],
) -> None:
failed_size_excs = list[tuple[ImageSize, Exception]]()
for size in image_sizes:
_validate_image_prompt_replacements_one(processor, num_imgs,
failed_size_excs, size)
if failed_size_excs:
msg = "Found failing image sizes:" \
+ "\n========\n".join(f"[{size}]\n{exc}"
for size, exc in failed_size_excs)
raise AssertionError(msg)
@pytest.mark.parametrize("model_id", ["MiniMaxAI/MiniMax-VL-01"])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_prompt_replacements_regression(model_id, num_imgs):
ctx = build_model_context(
model_id,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
image_ratios = [(171, 152), (184, 161), (198, 176), (333, 296), (369, 328),
(488, 183), (2560, 1669)]
image_sizes = [
size for w, h in image_ratios
for size in [ImageSize(w, h), ImageSize(h, w)]
]
_test_image_prompt_replacements(
processor,
num_imgs=num_imgs,
image_sizes=image_sizes,
)