vllm/tests/models/multimodal/processing/test_phi4mm.py

61 lines
2.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for phi4mm's multimodal preprocessing kwargs."""
import pytest
from vllm.multimodal import MULTIMODAL_REGISTRY
from ....conftest import ImageTestAssets
from ...utils import build_model_context
@pytest.mark.parametrize("model_id", ["microsoft/Phi-4-multimodal-instruct"])
# yapf: disable
@pytest.mark.parametrize(
("mm_processor_kwargs", "expected_toks_per_img"),
[
({"dynamic_hd": 4}, 1329),
({"dynamic_hd": 16}, 4433),
# the default num_crops of phi-4-multimodal is 36
({}, 9585),
])
# yapf: enable
@pytest.mark.parametrize("num_imgs", [1, 2])
@pytest.mark.parametrize("kwargs_on_init", [True, False])
def test_processor_override(
image_assets: ImageTestAssets,
model_id: str,
mm_processor_kwargs: dict[str, int],
expected_toks_per_img: int,
num_imgs: int,
kwargs_on_init: bool,
):
"""Ensure Phi4MMMultiModalProcessor handles dynamic_hd properly."""
# Avoid initializing CUDA early
from vllm.model_executor.models.phi4mm import _IMAGE_PLACEHOLDER_TOKEN_ID
ctx = build_model_context(
model_id,
mm_processor_kwargs=mm_processor_kwargs if kwargs_on_init else None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
hf_processor_mm_kwargs = {} if kwargs_on_init else mm_processor_kwargs
# Build the image str / prompt based on the number of images we pass
img_str = "".join([f"<|image_{idx}|>\n" for idx in range(1, num_imgs + 1)])
prompt = f"<|user|>\n{img_str}<|end|>\n<|assistant|>\n"
image_size = ctx.get_hf_config(
).embd_layer["image_embd_layer"]["crop_size"]
dummy_image_size = (image_size * 7, image_size * 7)
dummy_image = image_assets[0].pil_image.resize(dummy_image_size)
mm_data = {"image": [dummy_image] * num_imgs}
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
# Ensure we have the right number of placeholders per num_crops size
img_tok_count = processed_inputs["prompt_token_ids"].count(
_IMAGE_PLACEHOLDER_TOKEN_ID)
assert img_tok_count == expected_toks_per_img * num_imgs