vllm/tests/multimodal/test_utils.py

512 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import mimetypes
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import TYPE_CHECKING, NamedTuple, Optional
import numpy as np
import pytest
import torch
import torch.multiprocessing as mp
from PIL import Image, ImageChops
from tests.utils import multi_gpu_test
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import (MediaConnector,
merge_and_sort_multimodal_metadata,
run_dp_sharded_vision_model)
from vllm.platforms import current_platform
from vllm.utils import get_open_port, update_environment_variables
if TYPE_CHECKING:
from vllm.multimodal.hasher import MultiModalHashDict
from vllm.multimodal.inputs import MultiModalPlaceholderDict
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
TEST_VIDEO_URLS = [
"https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4",
"https://filesamples.com/samples/video/avi/sample_640x360.avi",
]
@pytest.fixture(scope="module")
def url_images() -> dict[str, Image.Image]:
connector = MediaConnector()
return {
image_url: connector.fetch_image(image_url)
for image_url in TEST_IMAGE_URLS
}
def get_supported_suffixes() -> tuple[str, ...]:
# We should at least test the file types mentioned in GPT-4 with Vision
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
# Additional file types that are supported by us
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
return (np.asarray(a) == np.asarray(convert_image_mode(b, a.mode))).all()
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_fetch_image_http(image_url: str):
connector = MediaConnector()
image_sync = connector.fetch_image(image_url)
image_async = await connector.fetch_image_async(image_url)
assert _image_equals(image_sync, image_async)
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
@pytest.mark.parametrize("suffix", get_supported_suffixes())
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
image_url: str, suffix: str):
connector = MediaConnector()
url_image = url_images[image_url]
try:
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
except KeyError:
try:
mime_type = mimetypes.types_map[suffix]
except KeyError:
pytest.skip('No MIME type')
with NamedTemporaryFile(suffix=suffix) as f:
try:
url_image.save(f.name)
except Exception as e:
if e.args[0] == 'cannot write mode RGBA as JPEG':
pytest.skip('Conversion not supported')
raise
base64_image = base64.b64encode(f.read()).decode("utf-8")
data_url = f"data:{mime_type};base64,{base64_image}"
data_image_sync = connector.fetch_image(data_url)
if _image_equals(url_image, Image.open(f)):
assert _image_equals(url_image, data_image_sync)
else:
pass # Lossy format; only check that image can be opened
data_image_async = await connector.fetch_image_async(data_url)
assert _image_equals(data_image_sync, data_image_async)
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_fetch_image_local_files(image_url: str):
connector = MediaConnector()
with TemporaryDirectory() as temp_dir:
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
origin_image = connector.fetch_image(image_url)
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
quality=100,
icc_profile=origin_image.info.get('icc_profile'))
image_async = await local_connector.fetch_image_async(
f"file://{temp_dir}/{os.path.basename(image_url)}")
image_sync = local_connector.fetch_image(
f"file://{temp_dir}/{os.path.basename(image_url)}")
# Check that the images are equal
assert not ImageChops.difference(image_sync, image_async).getbbox()
with pytest.raises(ValueError, match="must be a subpath"):
await local_connector.fetch_image_async(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(RuntimeError, match="Cannot load local files"):
await connector.fetch_image_async(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(ValueError, match="must be a subpath"):
local_connector.fetch_image(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(RuntimeError, match="Cannot load local files"):
connector.fetch_image(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
@pytest.mark.asyncio
async def test_fetch_image_error_conversion():
connector = MediaConnector()
broken_img = ""
# PIL.UnidentifiedImageError should be converted to ValueError
with pytest.raises(ValueError):
await connector.fetch_image_async(broken_img)
with pytest.raises(ValueError):
connector.fetch_image(broken_img)
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
async def test_fetch_video_http(video_url: str, num_frames: int):
connector = MediaConnector()
video_sync = connector.fetch_video(video_url, num_frames=num_frames)
video_async = await connector.fetch_video_async(video_url,
num_frames=num_frames)
assert np.array_equal(video_sync, video_async)
# Used for the next two tests related to `merge_and_sort_multimodal_metadata`.
class TestCase(NamedTuple):
mm_positions: "MultiModalPlaceholderDict"
mm_hashes: Optional["MultiModalHashDict"]
expected_modalities: list[str]
expected_ranges: list[PlaceholderRange]
expected_hashes: Optional[list[str]]
def test_merge_and_sort_multimodal_metadata():
test_cases = [
# Single modality should return result as is but flattened
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=3, length=2),
]
},
mm_hashes={"image": ["hash1", "hash2"]},
expected_modalities=["image", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=3, length=2),
],
expected_hashes=["hash1", "hash2"],
),
# Single modality without hashes return None for mm hash.
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=2),
]
},
mm_hashes=None,
expected_modalities=["image", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=2),
],
expected_hashes=None,
),
# Multiple modalities with hashes should return sorted modalities
# and flattened ranges and hashes.
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=7, length=4),
PlaceholderRange(offset=11, length=5),
],
"audio": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
]
},
mm_hashes={
"image": ["image_hash1", "image_hash2"],
"audio": ["audio_hash1", "audio_hash2"],
},
expected_modalities=["audio", "audio", "image", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
PlaceholderRange(offset=7, length=4),
PlaceholderRange(offset=11, length=5),
],
expected_hashes=[
"audio_hash1", "audio_hash2", "image_hash1", "image_hash2"
],
),
# Multiple modalities without hashes should return sorted modalities
# and flattened ranges and None.
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=7, length=4),
PlaceholderRange(offset=11, length=5),
],
"audio": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
]
},
mm_hashes=None,
expected_modalities=["audio", "audio", "image", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
PlaceholderRange(offset=7, length=4),
PlaceholderRange(offset=11, length=5),
],
expected_hashes=None,
),
# Three modalities
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=15, length=7),
PlaceholderRange(offset=22, length=8),
],
"audio": [
PlaceholderRange(offset=0, length=2),
],
"video": [
PlaceholderRange(offset=3, length=4),
PlaceholderRange(offset=7, length=5),
PlaceholderRange(offset=12, length=6),
]
},
mm_hashes={
"image": ["image_hash1", "image_hash2"],
"audio": ["audio_hash1"],
"video": ["video_hash1", "video_hash2", "video_hash3"]
},
expected_modalities=[
"audio", "video", "video", "video", "image", "image"
],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=3, length=4),
PlaceholderRange(offset=7, length=5),
PlaceholderRange(offset=12, length=6),
PlaceholderRange(offset=15, length=7),
PlaceholderRange(offset=22, length=8),
],
expected_hashes=[
"audio_hash1", "video_hash1", "video_hash2", "video_hash3",
"image_hash1", "image_hash2"
],
),
]
for (mm_positions, mm_hashes, expected_modalities, expected_ranges,
expected_hashes) in test_cases:
modalities, ranges, hashes = merge_and_sort_multimodal_metadata(
mm_positions, mm_hashes)
assert modalities == expected_modalities
assert ranges == expected_ranges
assert hashes == expected_hashes
def test_merge_and_sort_multimodal_metadata_with_interleaving():
test_cases = [
# <image> <audio> <image> <audio>
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=4),
PlaceholderRange(offset=8, length=2),
],
"audio": [
PlaceholderRange(offset=5, length=2),
PlaceholderRange(offset=11, length=4),
]
},
mm_hashes={
"image": ["image_hash1", "image_hash2"],
"audio": ["audio_hash1", "audio_hash2"],
},
expected_modalities=["image", "audio", "image", "audio"],
expected_ranges=[
PlaceholderRange(offset=0, length=4),
PlaceholderRange(offset=5, length=2),
PlaceholderRange(offset=8, length=2),
PlaceholderRange(offset=11, length=4),
],
expected_hashes=[
"image_hash1", "audio_hash1", "image_hash2", "audio_hash2"
],
),
# <image> <image> <audio> <video> <image>
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
PlaceholderRange(offset=20, length=4),
],
"audio": [
PlaceholderRange(offset=5, length=2),
],
"video": [
PlaceholderRange(offset=8, length=5),
]
},
mm_hashes=None,
expected_modalities=["image", "image", "audio", "video", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
PlaceholderRange(offset=5, length=2),
PlaceholderRange(offset=8, length=5),
PlaceholderRange(offset=20, length=4),
],
expected_hashes=None,
),
# <image> <audio> <video> <image> with hashes
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=18, length=4),
],
"audio": [
PlaceholderRange(offset=6, length=2),
],
"video": [
PlaceholderRange(offset=10, length=5),
]
},
mm_hashes={
"image": ["image_hash1", "image_hash2"],
"audio": ["audio_hash1"],
"video": ["video_hash1"],
},
expected_modalities=["image", "audio", "video", "image"],
expected_ranges=[
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=6, length=2),
PlaceholderRange(offset=10, length=5),
PlaceholderRange(offset=18, length=4),
],
expected_hashes=[
"image_hash1", "audio_hash1", "video_hash1", "image_hash2"
],
),
]
for (mm_positions, mm_hashes, expected_modalities, expected_ranges,
expected_hashes) in test_cases:
modalities, ranges, hashes = merge_and_sort_multimodal_metadata(
mm_positions, mm_hashes)
assert modalities == expected_modalities
assert ranges == expected_ranges
assert hashes == expected_hashes
class SimpleLinearModel(torch.nn.Module):
"""A simple linear vision model for testing."""
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
super().__init__()
self.flatten = torch.nn.Flatten()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor):
# Flatten the input and apply linear transformation
x = self.flatten(x)
return self.linear(x)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
4, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
batch_size: int, master_port: int):
"""
Test that run_dp_sharded_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create a test input tensor
image_input = torch.randn(batch_size, 3, 224, 224)
# Create a simple linear model
vision_model = SimpleLinearModel()
# Run the model directly on the full input
with torch.inference_mode():
direct_output = vision_model(image_input)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
# Check that the world size is setup correctly
assert get_tensor_model_parallel_world_size() == world_size
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)