mirror of https://github.com/vllm-project/vllm.git
195 lines
6.7 KiB
Python
195 lines
6.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Make sure bad_words works.
|
|
|
|
Run `pytest tests/samplers/test_no_bad_words.py`.
|
|
|
|
"""
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def v1(run_with_both_engines):
|
|
"""We can run both engines for this test."""
|
|
pass
|
|
|
|
|
|
def _generate(
|
|
model: LLM,
|
|
prompt: str,
|
|
num_prompt_tokens: int,
|
|
temperature: float = 0,
|
|
bad_words: Optional[list[str]] = None,
|
|
) -> list[int]:
|
|
sampling_params = SamplingParams(
|
|
temperature=temperature,
|
|
bad_words=bad_words,
|
|
)
|
|
|
|
# [([output_token_ids, ], [output_text, ]), ]
|
|
output = model.generate([prompt], sampling_params=sampling_params)
|
|
|
|
output_token_ids = output[0][0][0][num_prompt_tokens:]
|
|
# [0] first (and only) request output
|
|
# [0] token_ids (not text)
|
|
# [0] first (and only) output completion
|
|
|
|
return output_token_ids
|
|
|
|
|
|
class TestOneTokenBadWord:
|
|
MODEL = "TheBloke/Llama-2-7B-fp16"
|
|
|
|
PROMPT = "Hi! How are"
|
|
TARGET_TOKEN = "you"
|
|
|
|
def setup_method(self, method):
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL,
|
|
add_prefix_space=True)
|
|
|
|
self.num_prompt_tokens = len(self._encode(self.PROMPT))
|
|
self.target_token_id = self._encode(self.TARGET_TOKEN,
|
|
add_special_tokens=False)[0]
|
|
|
|
def test_one_token_bad_word(self, vllm_runner):
|
|
with vllm_runner(self.MODEL) as llm:
|
|
output_token_ids = self._generate(llm)
|
|
assert output_token_ids[0] == self.target_token_id
|
|
|
|
output_token_ids = self._generate(llm,
|
|
bad_words=[self.TARGET_TOKEN])
|
|
assert self.target_token_id not in output_token_ids
|
|
|
|
def _generate(self,
|
|
model: LLM,
|
|
bad_words: Optional[list[str]] = None) -> list[int]:
|
|
return _generate(
|
|
model=model,
|
|
prompt=self.PROMPT,
|
|
num_prompt_tokens=self.num_prompt_tokens,
|
|
bad_words=bad_words,
|
|
)
|
|
|
|
def _encode(self,
|
|
prompt: str,
|
|
add_special_tokens: bool = True) -> list[int]:
|
|
return self.tokenizer(prompt,
|
|
add_special_tokens=add_special_tokens).input_ids
|
|
|
|
|
|
class TestTwoTokenBadWord:
|
|
# Another model (with a different tokenizer behaviour)
|
|
MODEL = "distilbert/distilgpt2"
|
|
|
|
PROMPT = "How old are you? I am 10"
|
|
TARGET_TOKEN1 = "years"
|
|
TARGET_TOKEN2 = "old"
|
|
NEIGHBOUR_TOKEN2 = "older"
|
|
|
|
def setup_method(self, method):
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL,
|
|
add_prefix_space=True)
|
|
|
|
self.num_prompt_tokens = len(self._encode(self.PROMPT))
|
|
self.target_token_id1 = self._encode(self.TARGET_TOKEN1,
|
|
add_special_tokens=False)[0]
|
|
self.target_token_id2 = self._encode(self.TARGET_TOKEN2,
|
|
add_special_tokens=False)[0]
|
|
self.neighbour_token_id2 = self._encode(self.NEIGHBOUR_TOKEN2,
|
|
add_special_tokens=False)[0]
|
|
|
|
def test_two_token_bad_word(self, vllm_runner):
|
|
with vllm_runner(self.MODEL, dtype="half") as llm:
|
|
output_token_ids = self._generate(llm)
|
|
assert output_token_ids[:2] == [
|
|
self.target_token_id1, self.target_token_id2
|
|
]
|
|
|
|
output_token_ids = self._generate(llm,
|
|
bad_words=[self.TARGET_TOKEN1])
|
|
assert self.target_token_id1 not in output_token_ids
|
|
|
|
output_token_ids = self._generate(llm,
|
|
bad_words=[self.TARGET_TOKEN2])
|
|
assert output_token_ids[0] == self.target_token_id1
|
|
assert self.target_token_id2 not in output_token_ids
|
|
|
|
output_token_ids = self._generate(
|
|
llm, bad_words=[f'{self.TARGET_TOKEN1} {self.TARGET_TOKEN2}'])
|
|
assert output_token_ids[0] == self.target_token_id1
|
|
assert output_token_ids[:2] != [
|
|
self.target_token_id1, self.target_token_id2
|
|
]
|
|
assert not self._contains(
|
|
output_token_ids,
|
|
[self.target_token_id1, self.target_token_id2])
|
|
# Model dependent behaviour
|
|
assert output_token_ids[:2] == [
|
|
self.target_token_id1, self.neighbour_token_id2
|
|
]
|
|
|
|
output_token_ids = self._generate(
|
|
llm,
|
|
bad_words=[
|
|
f'{self.TARGET_TOKEN1} {self.TARGET_TOKEN2}',
|
|
f'{self.TARGET_TOKEN1} {self.NEIGHBOUR_TOKEN2}'
|
|
])
|
|
assert output_token_ids[0] == self.target_token_id1
|
|
assert output_token_ids[:2] != [
|
|
self.target_token_id1, self.target_token_id2
|
|
]
|
|
assert not self._contains(
|
|
output_token_ids,
|
|
[self.target_token_id1, self.target_token_id2])
|
|
assert output_token_ids[:2] != [
|
|
self.target_token_id1, self.neighbour_token_id2
|
|
]
|
|
assert not self._contains(
|
|
output_token_ids,
|
|
[self.target_token_id1, self.neighbour_token_id2])
|
|
assert ((self.target_token_id2 in output_token_ids)
|
|
or (self.neighbour_token_id2 in output_token_ids))
|
|
|
|
def _generate(self,
|
|
model: LLM,
|
|
bad_words: Optional[list[str]] = None) -> list[int]:
|
|
return _generate(
|
|
model=model,
|
|
prompt=self.PROMPT,
|
|
num_prompt_tokens=self.num_prompt_tokens,
|
|
bad_words=bad_words,
|
|
)
|
|
|
|
@staticmethod
|
|
def _contains(sequence: list[int], subsequence: list[int]) -> bool:
|
|
searched = False
|
|
|
|
for start in range(len(sequence)):
|
|
end = start + len(subsequence)
|
|
current_subsequence = sequence[start:end]
|
|
|
|
if len(current_subsequence) < len(subsequence):
|
|
continue
|
|
|
|
searched = True
|
|
|
|
assert len(current_subsequence) == len(subsequence)
|
|
|
|
if current_subsequence == subsequence:
|
|
return True
|
|
|
|
assert searched, "All subsequences did not match in length..."
|
|
|
|
return False
|
|
|
|
def _encode(self,
|
|
prompt: str,
|
|
add_special_tokens: bool = True) -> list[int]:
|
|
return self.tokenizer(prompt,
|
|
add_special_tokens=add_special_tokens).input_ids
|