vllm/tests/v1/engine/test_engine_core.py

415 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
import time
import uuid
from concurrent.futures import Future, ThreadPoolExecutor
import pytest
from transformers import AutoTokenizer
from vllm import SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.platforms import current_platform
from vllm.utils import set_default_torch_num_threads
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.core import EngineCore
from vllm.v1.executor.abstract import Executor, UniProcExecutor
from vllm.v1.kv_cache_interface import KVCacheConfig
from vllm.v1.outputs import ModelRunnerOutput
from ...utils import create_new_process_for_each_test, multi_gpu_test
if not current_platform.is_cuda():
pytest.skip(reason="V1 currently only supported on CUDA.",
allow_module_level=True)
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_NAME)
PROMPT = "Hello my name is Robert and I love quantization kernels"
PROMPT_TOKENS = TOKENIZER(PROMPT).input_ids
def make_request() -> EngineCoreRequest:
return EngineCoreRequest(
request_id=str(uuid.uuid4()),
prompt_token_ids=PROMPT_TOKENS,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
sampling_params=SamplingParams(),
eos_token_id=None,
arrival_time=time.time(),
lora_request=None,
cache_salt=None,
data_parallel_rank=None,
)
@create_new_process_for_each_test()
def test_engine_core(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
"""Setup the EngineCore."""
engine_args = EngineArgs(model=MODEL_NAME)
vllm_config = engine_args.create_engine_config()
executor_class = Executor.get_class(vllm_config)
with set_default_torch_num_threads(1):
engine_core = EngineCore(vllm_config=vllm_config,
executor_class=executor_class,
log_stats=True)
"""Test basic request lifecycle."""
# First request.
engine_core.add_request(make_request())
assert len(engine_core.scheduler.waiting) == 1
assert len(engine_core.scheduler.running) == 0
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 1
# Second request.
engine_core.add_request(make_request())
assert len(engine_core.scheduler.waiting) == 1
assert len(engine_core.scheduler.running) == 1
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 2
# Add two requests in a row.
engine_core.add_request(make_request())
engine_core.add_request(make_request())
assert len(engine_core.scheduler.waiting) == 2
assert len(engine_core.scheduler.running) == 2
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 4
# Loop through until they are all done.
while (outs := engine_core.step()[0].get(0)) and outs.outputs:
pass
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 0
"""Test abort cycle."""
# Basic abort.
req = make_request()
request_id = req.request_id
engine_core.add_request(req)
assert len(engine_core.scheduler.waiting) == 1
assert len(engine_core.scheduler.running) == 0
assert engine_core.scheduler.has_unfinished_requests()
assert not engine_core.scheduler.has_finished_requests()
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 1
assert engine_core.scheduler.has_unfinished_requests()
assert not engine_core.scheduler.has_finished_requests()
engine_core.abort_requests([request_id])
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 0
assert not engine_core.scheduler.has_unfinished_requests()
assert engine_core.scheduler.has_finished_requests()
_ = engine_core.step()
assert not engine_core.scheduler.has_unfinished_requests()
assert not engine_core.scheduler.has_finished_requests()
# Add, step, abort 1 of the 3.
req0 = make_request()
req1 = make_request()
req2 = make_request()
engine_core.add_request(req0)
engine_core.add_request(req1)
assert len(engine_core.scheduler.waiting) == 2
assert len(engine_core.scheduler.running) == 0
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 2
engine_core.add_request(req2)
assert len(engine_core.scheduler.waiting) == 1
assert len(engine_core.scheduler.running) == 2
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 3
# Abort just one.
engine_core.abort_requests([req1.request_id])
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 2
_ = engine_core.step()
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 2
# Abort the other requests at the same time.
engine_core.abort_requests([req2.request_id, req0.request_id])
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 0
# Sending duplicate requests with same request_id
req0 = make_request()
req1 = make_request()
req0.request_id = req1.request_id = "test"
engine_core.add_request(req0)
while (outs := engine_core.step()[0].get(0)) and outs.outputs:
pass
engine_core.add_request(req1)
while (outs := engine_core.step()[0].get(0)) and outs.outputs:
pass
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 0
@create_new_process_for_each_test()
def test_engine_core_advanced_sampling(monkeypatch: pytest.MonkeyPatch):
"""
A basic end-to-end test to verify that the engine functions correctly
when additional sampling parameters, such as top_p, min_tokens, and
presence_penalty, are set.
"""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
"""Setup the EngineCore."""
engine_args = EngineArgs(model=MODEL_NAME)
vllm_config = engine_args.create_engine_config()
executor_class = Executor.get_class(vllm_config)
with set_default_torch_num_threads(1):
engine_core = EngineCore(vllm_config=vllm_config,
executor_class=executor_class,
log_stats=True)
"""Test basic request lifecycle."""
# First request.
request: EngineCoreRequest = make_request()
request.sampling_params = SamplingParams(
min_tokens=4,
presence_penalty=1.0,
frequency_penalty=1.0,
repetition_penalty=0.1,
stop_token_ids=[1001, 1002],
)
engine_core.add_request(request)
def _check_engine_state():
assert len(engine_core.scheduler.waiting) == 1
assert len(engine_core.scheduler.running) == 0
# Loop through until they are all done.
while (outs := engine_core.step()[0].get(0)) and outs.outputs:
pass
assert len(engine_core.scheduler.waiting) == 0
assert len(engine_core.scheduler.running) == 0
_check_engine_state()
# Second request.
request2 = make_request()
request2.sampling_params = SamplingParams(
top_p=0.99,
top_k=50,
)
engine_core.add_request(request2)
_check_engine_state()
@create_new_process_for_each_test()
def test_engine_core_concurrent_batches(monkeypatch: pytest.MonkeyPatch):
"""
Test that the engine can handle multiple concurrent batches.
"""
def make_request_with_max_tokens(req_id: int,
max_tokens: int) -> EngineCoreRequest:
request = make_request()
request.request_id = req_id
request.sampling_params.max_tokens = max_tokens
return request
class DummyExecutor(UniProcExecutor):
def initialize_from_config(
self, kv_cache_configs: list[KVCacheConfig]) -> None:
super().initialize_from_config(kv_cache_configs)
# Create a thread pool with a single worker
self.thread_pool = ThreadPoolExecutor(max_workers=1)
def execute_model(
self,
scheduler_output,
) -> Future[ModelRunnerOutput]:
"""Make execute_model non-blocking."""
def _execute():
output = self.collective_rpc("execute_model",
args=(scheduler_output, ))
# Make a copy because output[0] may be reused
# by the next batch.
return copy.deepcopy(output[0])
# Use the thread pool instead of creating a new thread
return self.thread_pool.submit(_execute)
@property
def max_concurrent_batches(self) -> int:
return 2
def shutdown(self):
if hasattr(self, 'thread_pool'):
self.thread_pool.shutdown(wait=False)
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
engine_args = EngineArgs(
model=MODEL_NAME,
# To test concurrent batches.
max_num_seqs=2,
# Avoid all requests being scheduled once.
enable_prefix_caching=False,
max_num_batched_tokens=10,
# Reduce startup time.
enforce_eager=True,
)
vllm_config = engine_args.create_engine_config()
with set_default_torch_num_threads(1):
engine_core = EngineCore(vllm_config=vllm_config,
log_stats=False,
executor_class=DummyExecutor)
assert engine_core.batch_queue is not None
# Add two requests in a row. Each request have 12 prompt tokens.
req0 = make_request_with_max_tokens(0, 5)
engine_core.add_request(req0)
req1 = make_request_with_max_tokens(1, 5)
engine_core.add_request(req1)
# Schedule Batch 1: (10, req0)
assert engine_core.step_with_batch_queue()[0] is None
assert engine_core.batch_queue.qsize() == 1
scheduler_output = engine_core.batch_queue.queue[-1][1]
assert scheduler_output.num_scheduled_tokens[0] == 10
# num_computed_tokens should have been updated immediately.
assert engine_core.scheduler.requests[
req0.request_id].num_computed_tokens == 10
# Schedule Batch 2: (2, req0), (8, req1)
assert engine_core.step_with_batch_queue()[0] is None
assert engine_core.batch_queue.qsize() == 2
scheduler_output = engine_core.batch_queue.queue[-1][1]
assert scheduler_output.num_scheduled_tokens[0] == 2
assert scheduler_output.num_scheduled_tokens[1] == 8
# num_computed_tokens should have been updated immediately.
assert engine_core.scheduler.requests[0].num_computed_tokens == 12
assert engine_core.scheduler.requests[1].num_computed_tokens == 8
assert engine_core.scheduler.get_num_unfinished_requests() == 2
# Batch queue is full. Finish Batch 1.
engine_core.step_with_batch_queue()
# Schedule Batch 3: (4, req1). Note that req0 cannot be scheduled
# because it is in the decoding stage now.
engine_core.step_with_batch_queue()
assert engine_core.batch_queue.qsize() == 2
scheduler_output = engine_core.batch_queue.queue[-1][1]
assert scheduler_output.num_scheduled_tokens[1] == 4
# Batch queue is full. Finish Batch 2. Get first token of req0.
output = engine_core.step_with_batch_queue()[0].get(0)
assert output is not None
assert len(output.outputs) == 1
assert engine_core.scheduler.requests[req0.request_id].num_tokens == 13
# Schedule Batch 4: (1, req0).
engine_core.step_with_batch_queue()
assert engine_core.batch_queue.qsize() == 2
scheduler_output = engine_core.batch_queue.queue[-1][1]
assert scheduler_output.num_scheduled_tokens[0] == 1
# Batch queue is full. Finish Batch 3. Get first token of req1.
output = engine_core.step_with_batch_queue()[0].get(0)
assert output is not None
assert len(output.outputs) == 1
assert engine_core.scheduler.requests[req1.request_id].num_tokens == 13
# Schedule Batch 5: (1, req1).
engine_core.step_with_batch_queue()
assert engine_core.batch_queue.qsize() == 2
scheduler_output = engine_core.batch_queue.queue[-1][1]
assert scheduler_output.num_scheduled_tokens[1] == 1
# Loop until req0 is finished.
step = 0
req_id = 0
expected_num_tokens = [
engine_core.scheduler.requests[0].num_tokens + 1,
engine_core.scheduler.requests[1].num_tokens + 1,
]
while engine_core.scheduler.get_num_unfinished_requests() == 2:
output = engine_core.step_with_batch_queue()[0]
if step % 2 == 0:
# Even steps consumes an output.
assert output is not None
assert len(output[0].outputs) == 1
if req_id in engine_core.scheduler.requests:
assert engine_core.scheduler.requests[
req_id].num_tokens == expected_num_tokens[req_id]
expected_num_tokens[req_id] += 1
req_id = (req_id + 1) % 2
else:
# Odd steps schedules a new batch.
assert output is None
step += 1
@multi_gpu_test(num_gpus=2)
def test_engine_core_tp(monkeypatch: pytest.MonkeyPatch):
"""
Test engine can initialize worker in tp properly
"""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
"""Setup the EngineCore."""
engine_args = EngineArgs(
model=MODEL_NAME,
tensor_parallel_size=2,
# Reduce startup time.
enforce_eager=True,
)
vllm_config = engine_args.create_engine_config()
executor_class = Executor.get_class(vllm_config)
with set_default_torch_num_threads(1):
engine_core = EngineCore(vllm_config=vllm_config,
executor_class=executor_class,
log_stats=True)
def get_worker_cache_config_field(worker, key: str):
return getattr(worker.cache_config, key)
num_gpu_blocks = engine_core.collective_rpc(
get_worker_cache_config_field, args=("num_gpu_blocks", ))
num_cpu_blocks = engine_core.collective_rpc(
get_worker_cache_config_field, args=("num_cpu_blocks", ))
assert all(x is not None for x in num_gpu_blocks)
assert all(x is not None for x in num_cpu_blocks)