mirror of https://github.com/vllm-project/vllm.git
715 lines
24 KiB
Python
715 lines
24 KiB
Python
# ruff: noqa: E501
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from enum import Enum
|
|
from typing import TYPE_CHECKING, Any
|
|
|
|
import jsonschema
|
|
import pytest
|
|
import regex as re
|
|
from pydantic import BaseModel
|
|
|
|
from tests.reasoning.utils import run_reasoning_extraction
|
|
from vllm.entrypoints.llm import LLM
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.platforms import current_platform
|
|
from vllm.reasoning.abs_reasoning_parsers import ReasoningParserManager
|
|
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import TokenizerMode
|
|
|
|
NGRAM_SPEC_CONFIG = {
|
|
"model": "[ngram]",
|
|
"num_speculative_tokens": 5,
|
|
"prompt_lookup_max": 5,
|
|
"prompt_lookup_min": 1,
|
|
}
|
|
|
|
EAGLE_SPEC_CONFIG = {
|
|
"method": "eagle",
|
|
"model": "yuhuili/EAGLE-LLaMA3.1-Instruct-8B",
|
|
"num_speculative_tokens": 5,
|
|
}
|
|
|
|
PARAMS_MODELS_BACKENDS_TOKENIZER_MODE = [
|
|
("mistralai/Ministral-8B-Instruct-2410", "xgrammar", "auto", None),
|
|
("mistralai/Ministral-8B-Instruct-2410", "guidance", "auto", None),
|
|
("mistralai/Ministral-8B-Instruct-2410", "xgrammar", "mistral", None),
|
|
("Qwen/Qwen2.5-1.5B-Instruct", "xgrammar", "auto", None),
|
|
#FIXME: This test is flaky on CI thus disabled
|
|
#("Qwen/Qwen2.5-1.5B-Instruct", "guidance", "auto"),
|
|
("mistralai/Ministral-8B-Instruct-2410", "guidance", "auto",
|
|
NGRAM_SPEC_CONFIG),
|
|
("Qwen/Qwen2.5-1.5B-Instruct", "xgrammar", "auto", NGRAM_SPEC_CONFIG),
|
|
("meta-llama/Meta-Llama-3.1-8B-Instruct", "xgrammar", "auto",
|
|
EAGLE_SPEC_CONFIG)
|
|
]
|
|
|
|
PARAMS_MODELS_TOKENIZER_MODE = [
|
|
("mistralai/Ministral-8B-Instruct-2410", "auto"),
|
|
("Qwen/Qwen2.5-1.5B-Instruct", "auto"),
|
|
]
|
|
|
|
|
|
class CarType(str, Enum):
|
|
sedan = "sedan"
|
|
suv = "SUV"
|
|
truck = "Truck"
|
|
coupe = "Coupe"
|
|
|
|
|
|
class CarDescription(BaseModel):
|
|
brand: str
|
|
model: str
|
|
car_type: CarType
|
|
|
|
|
|
def _load_json(s: str, backend: str) -> str:
|
|
if backend != "xgrammar":
|
|
return json.loads(s)
|
|
|
|
# xgrammar specific workarounds
|
|
# https://github.com/mlc-ai/xgrammar/issues/286
|
|
s = re.sub(r'[\x00-\x1F\x7F-\xFF]', '', s)
|
|
return json.loads(s)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize(
|
|
"model_name, guided_decoding_backend, tokenizer_mode, speculative_config",
|
|
PARAMS_MODELS_BACKENDS_TOKENIZER_MODE)
|
|
def test_structured_output(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
sample_json_schema: dict[str, Any],
|
|
unsupported_json_schema: dict[str, Any],
|
|
sample_sql_ebnf: str,
|
|
sample_sql_lark: str,
|
|
sample_regex: str,
|
|
sample_guided_choice: str,
|
|
guided_decoding_backend: str,
|
|
tokenizer_mode: str,
|
|
model_name: str,
|
|
speculative_config: dict[str, Any],
|
|
):
|
|
monkeypatch.setenv("VLLM_USE_V1", "1")
|
|
|
|
if current_platform.is_tpu() and speculative_config:
|
|
pytest.skip("TPU does not support speculative decoding")
|
|
|
|
# Don't use eager execution on TPUs because we want to test for no
|
|
# recompilation at runtime
|
|
enforce_eager = bool(not current_platform.is_tpu())
|
|
# Use a single LLM instance for several scenarios to
|
|
# speed up the test suite.
|
|
llm = LLM(model=model_name,
|
|
enforce_eager=enforce_eager,
|
|
max_model_len=1024,
|
|
guided_decoding_backend=guided_decoding_backend,
|
|
guided_decoding_disable_any_whitespace=True,
|
|
tokenizer_mode=tokenizer_mode,
|
|
speculative_config=speculative_config)
|
|
|
|
#
|
|
# Test 1: Generate JSON output based on a provided schema
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=4096,
|
|
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
|
|
outputs = llm.generate(prompts=[
|
|
(f"Give an example JSON for an employee profile that fits this "
|
|
f"schema. Make the response as short as possible. Schema: "
|
|
f"{sample_json_schema}")
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
assert "\n" not in generated_text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json, schema=sample_json_schema)
|
|
|
|
#
|
|
# Test 2: Generate JSON object without a schema
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=4096,
|
|
n=2,
|
|
guided_decoding=GuidedDecodingParams(json_object=True))
|
|
|
|
outputs = llm.generate(
|
|
prompts=("Generate a JSON object with curly braces for a person with "
|
|
"name and age fields for John Smith who is 31 years old. "
|
|
"Make the response as short as possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
|
|
for i in range(2):
|
|
generated_text = output.outputs[i].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
|
|
# Parse to verify it is a valid JSON object
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|
|
|
|
#
|
|
# Test 3: test a jsonschema incompatible with xgrammar
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=4096,
|
|
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
|
|
if guided_decoding_backend.startswith("xgrammar"):
|
|
with pytest.raises(ValueError,
|
|
match="The provided JSON schema contains features "
|
|
"not supported by xgrammar."):
|
|
llm.generate(
|
|
prompts=[(f"Give an example JSON for an employee profile that "
|
|
f"fits this schema: {unsupported_json_schema}. "
|
|
f"Make the response as short as possible.")] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
else:
|
|
outputs = llm.generate(prompts=(
|
|
"Give an example JSON object for a grade "
|
|
"that fits this schema: "
|
|
f"{unsupported_json_schema}. Make the response as short as "
|
|
"possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(generated_text)
|
|
|
|
# Parse to verify it is valid JSON
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|
|
|
|
#
|
|
# Test 4: Generate SQL statement using EBNF grammar
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(grammar=sample_sql_ebnf))
|
|
outputs = llm.generate(
|
|
prompts=(
|
|
"Generate a sql statement that selects col_1 from "
|
|
"table_1 where it is equal to 1. Make the response as short as "
|
|
"possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
|
|
# remove spaces for comparison b/c we removed them in the grammar
|
|
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
|
|
" ", "")
|
|
|
|
assert generated_text.strip() == ground_truth
|
|
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
#
|
|
# Test 5: Generate SQL statement using Lark grammar
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(grammar=sample_sql_lark))
|
|
outputs = llm.generate(
|
|
prompts=(
|
|
"Generate a sql statement that selects col_1 from "
|
|
"table_1 where it is equal to 1. Make the response as short as "
|
|
"possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
|
|
# use Lark to parse the output, and make sure it's a valid parse tree
|
|
from lark import Lark
|
|
parser = Lark(sample_sql_lark)
|
|
parser.parse(generated_text)
|
|
|
|
# remove spaces for comparison b/c we removed them in the grammar
|
|
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
|
|
" ", "")
|
|
|
|
assert generated_text.strip() == ground_truth
|
|
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
#
|
|
# Test 6: Test invalid grammar input
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(grammar="not a grammar"))
|
|
with pytest.raises(ValueError, match="Failed to convert the grammar "):
|
|
llm.generate(
|
|
prompts=(
|
|
"Generate a sql statement that selects col_1 from "
|
|
"table_1 where it is equal to 1. Make the response as short "
|
|
"as possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
#
|
|
# Test 7: Generate text based on a regex pattern
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(regex=sample_regex))
|
|
outputs = llm.generate(
|
|
prompts=[
|
|
(f"Give an example IPv4 address with this regex: {sample_regex}. "
|
|
f"Make the response as short as possible.")
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert re.fullmatch(sample_regex, generated_text) is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
#
|
|
# Test 8: Generate text based on a choices
|
|
#
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(choice=sample_guided_choice))
|
|
outputs = llm.generate(
|
|
prompts=("The best language for type-safe systems programming is "
|
|
"(Make the response as short as possible.) "),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert generated_text in sample_guided_choice
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
#
|
|
# Test 9: Generate structured output using a Pydantic model with an enum
|
|
#
|
|
json_schema = CarDescription.model_json_schema()
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(json=json_schema))
|
|
outputs = llm.generate(prompts=(
|
|
"Generate a JSON with the brand, model and car_type of the most "
|
|
"iconic car from the 90's. Make the response as short as "
|
|
"possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json, schema=json_schema)
|
|
|
|
#
|
|
# Test 10: Generate structured with minLength and maxLength
|
|
#
|
|
min_length = 50
|
|
max_length = 50
|
|
json_schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"description": {
|
|
"type": "string",
|
|
"maxLength": max_length,
|
|
"minLength": min_length
|
|
}
|
|
},
|
|
"required": ["description"],
|
|
"additionalProperties": False
|
|
}
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=4096,
|
|
guided_decoding=GuidedDecodingParams(json=json_schema))
|
|
|
|
outputs = llm.generate(
|
|
prompts=("Generate a description of a frog using 50 characters. "
|
|
"Make the response as short as possible."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json, schema=json_schema)
|
|
|
|
#
|
|
# Test 11: Generate structured output using structural_tag format
|
|
#
|
|
structural_tag_config = {
|
|
"type":
|
|
"structural_tag",
|
|
"structures": [{
|
|
"begin": "<function=get_weather>",
|
|
"schema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"city": {
|
|
"type": "string"
|
|
}
|
|
},
|
|
"additionalProperties": False
|
|
},
|
|
"end": "</function>"
|
|
}],
|
|
"triggers": ["<function="]
|
|
}
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=0.0,
|
|
max_tokens=4096,
|
|
guided_decoding=GuidedDecodingParams(
|
|
structural_tag=json.dumps(structural_tag_config)))
|
|
|
|
prompt = """
|
|
You have access to the following function to retrieve the weather in a city:
|
|
|
|
{
|
|
"name": "get_weather",
|
|
"parameters": {
|
|
"city": {
|
|
"param_type": "string",
|
|
"description": "The city to get the weather for",
|
|
"required": True
|
|
}
|
|
}
|
|
}
|
|
|
|
If a you choose to call a function ONLY reply in the following format:
|
|
<{start_tag}={function_name}>{parameters}{end_tag}
|
|
where
|
|
|
|
start_tag => `<function`
|
|
parameters => a JSON dict with the function argument name
|
|
as key and function argument value as value.
|
|
end_tag => `</function>`
|
|
|
|
Here is an example,
|
|
<function=example_function_name>{"example_name": "example_value"}</function>
|
|
|
|
Reminder:
|
|
- Function calls MUST follow the specified format
|
|
- Required parameters MUST be specified
|
|
- Only call one function at a time
|
|
- Put the entire function call reply on one line
|
|
- Always add your sources when using search results to answer the user query
|
|
|
|
You are a helpful assistant.
|
|
|
|
Given the previous instructions, what is the weather in New York City? \
|
|
Make the response as short as possible.
|
|
"""
|
|
|
|
# Change this once other backends support structural_tag
|
|
outputs = llm.generate(prompts=prompt,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
|
|
# Search for function call pattern in the response
|
|
function_call_pattern = r'<function=get_weather>(.*?)</function>'
|
|
matches = re.findall(function_call_pattern, generated_text)
|
|
|
|
if not matches:
|
|
print(f"Warning: No function calls found in response: "
|
|
f"{generated_text!r}")
|
|
continue
|
|
|
|
# Take the first function call if multiple are found
|
|
json_str = matches[0]
|
|
try:
|
|
json_content = json.loads(json_str)
|
|
assert "city" in json_content
|
|
assert isinstance(json_content["city"], str)
|
|
print(f"Found valid function call: {generated_text!r}")
|
|
except (json.JSONDecodeError, AssertionError) as e:
|
|
pytest.fail("Invalid function call format: "
|
|
f"{generated_text!r}\nError: {str(e)}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize(
|
|
"model_name, guided_decoding_backend, tokenizer_mode, reasoning_parser, speculative_config", # noqa: E501
|
|
[
|
|
("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "xgrammar", "auto",
|
|
"deepseek_r1", NGRAM_SPEC_CONFIG),
|
|
("Qwen/Qwen3-1.7B", "xgrammar", "auto", "deepseek_r1", None),
|
|
],
|
|
)
|
|
def test_structured_output_with_reasoning_matrices(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
guided_decoding_backend: str,
|
|
tokenizer_mode: TokenizerMode,
|
|
reasoning_parser: str,
|
|
model_name: str,
|
|
speculative_config: dict[str, Any] | None,
|
|
):
|
|
monkeypatch.setenv("VLLM_USE_V1", "1")
|
|
|
|
if current_platform.is_tpu() and speculative_config:
|
|
pytest.skip("TPU does not support speculative decoding")
|
|
|
|
# Use a single LLM instance for several scenarios to
|
|
# speed up the test suite.
|
|
llm = LLM(
|
|
model=model_name,
|
|
# Don't use eager execution on TPUs because we want to test for no
|
|
# recompilation at runtime
|
|
enforce_eager=bool(not current_platform.is_tpu()),
|
|
max_model_len=1024,
|
|
max_num_seqs=16,
|
|
guided_decoding_backend=guided_decoding_backend,
|
|
guided_decoding_disable_any_whitespace=True,
|
|
tokenizer_mode=tokenizer_mode,
|
|
reasoning_parser=reasoning_parser,
|
|
speculative_config=speculative_config,
|
|
)
|
|
tokenizer = llm.get_tokenizer(None)
|
|
reasoner = ReasoningParserManager.get_reasoning_parser(reasoning_parser)(
|
|
tokenizer=tokenizer)
|
|
|
|
reasoning_prompt = "Solve the following math problem step-by-step, then provide the final answer as JSON object with a single key 'result'. Make sure to correct your reasoning if there are any issue should it arise.\nProblem: What is 5 * 8 + 2?" # noqa: E501
|
|
reasoning_schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"result": {
|
|
"type": "integer"
|
|
}
|
|
},
|
|
"required": ["result"],
|
|
"additionalProperties": False
|
|
}
|
|
if "Qwen3" in model_name:
|
|
reasoning_prompt += "<think>\n"
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=0.1,
|
|
max_tokens=8192,
|
|
guided_decoding=GuidedDecodingParams(json=reasoning_schema),
|
|
)
|
|
outputs = llm.generate(
|
|
[reasoning_prompt],
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
output = outputs[0]
|
|
assert output is not None and isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
reasoning_content, content = run_reasoning_extraction(
|
|
reasoner, [generated_text])
|
|
print(
|
|
f"Prompt: {prompt!r}\nReasoning: {reasoning_content!r}\nContent: {content!r}"
|
|
)
|
|
|
|
assert content is not None and reasoning_content is not None
|
|
output_json = json.loads(content)
|
|
jsonschema.validate(instance=output_json, schema=reasoning_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("model_name, tokenizer_mode",
|
|
PARAMS_MODELS_TOKENIZER_MODE)
|
|
def test_structured_output_auto_mode(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
unsupported_json_schema: dict[str, Any],
|
|
model_name: str,
|
|
tokenizer_mode: str,
|
|
):
|
|
monkeypatch.setenv("VLLM_USE_V1", "1")
|
|
|
|
llm = LLM(model=model_name,
|
|
max_model_len=1024,
|
|
guided_decoding_backend="auto",
|
|
tokenizer_mode=tokenizer_mode)
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
|
|
|
|
prompts = (
|
|
"Give an example JSON object for a grade "
|
|
"that fits this schema: "
|
|
f"{unsupported_json_schema}. Make the response as short as possible.")
|
|
# This would fail with the default of "xgrammar", but in "auto"
|
|
# we will handle fallback automatically.
|
|
outputs = llm.generate(prompts=prompts,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
# Make sure `auto` backend handling doesn't mess up sampling_params
|
|
# and that we can reuse it without error.
|
|
outputs.extend(
|
|
llm.generate(prompts=prompts,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True))
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(generated_text)
|
|
|
|
# Parse to verify it is valid JSON
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_guidance_no_additional_properties(monkeypatch: pytest.MonkeyPatch):
|
|
monkeypatch.setenv("VLLM_USE_V1", "1")
|
|
|
|
llm = LLM(model="Qwen/Qwen2.5-1.5B-Instruct",
|
|
max_model_len=1024,
|
|
guided_decoding_backend="guidance",
|
|
guided_decoding_disable_any_whitespace=True,
|
|
guided_decoding_disable_additional_properties=True)
|
|
|
|
schema = {
|
|
'type': 'object',
|
|
'properties': {
|
|
'a1': {
|
|
'type': 'string'
|
|
},
|
|
'a2': {
|
|
'type': 'string'
|
|
},
|
|
'a3': {
|
|
'type': 'string'
|
|
}
|
|
},
|
|
'required': ['a1', 'a2', 'a3'],
|
|
}
|
|
|
|
prompt = (
|
|
"<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a "
|
|
"helpful assistant.<|im_end|>\n<|im_start|>user\nPlease generate a "
|
|
"large JSON object with key-value pairs a1=b1, a2=b2, ..., a20=b20. "
|
|
"Make the response as short as possible."
|
|
"<|im_end|>\n<|im_start|>assistant\n")
|
|
|
|
def generate_with_backend(backend):
|
|
guided_params = GuidedDecodingParams(
|
|
json=schema,
|
|
backend=backend,
|
|
disable_any_whitespace=True,
|
|
disable_additional_properties=True)
|
|
sampling_params = SamplingParams(temperature=0,
|
|
max_tokens=256,
|
|
guided_decoding=guided_params)
|
|
|
|
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
|
|
assert outputs is not None
|
|
generated_text = outputs[0].outputs[0].text
|
|
assert generated_text is not None
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|
|
jsonschema.validate(instance=parsed_json, schema=schema)
|
|
return parsed_json
|
|
|
|
generated = generate_with_backend("guidance")
|
|
assert "a1" in generated
|
|
assert "a2" in generated
|
|
assert "a3" in generated
|
|
assert "a4" not in generated
|
|
assert "a5" not in generated
|
|
assert "a6" not in generated
|