mirror of https://github.com/vllm-project/vllm.git
682 lines
25 KiB
Python
682 lines
25 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from typing import Optional
|
|
|
|
import openai # use the official client for correctness check
|
|
import pytest
|
|
import pytest_asyncio
|
|
import regex as re
|
|
from openai import BadRequestError
|
|
|
|
from tests.utils import RemoteOpenAIServer
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
# any model with a chat template should work here
|
|
MODEL_NAME = "facebook/opt-125m"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def default_server_args():
|
|
return [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"2048",
|
|
"--max-num-seqs",
|
|
"128",
|
|
"--enforce-eager"
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module",
|
|
params=[["--no-enable-prefix-caching"],
|
|
[
|
|
"--no-enable-prefix-caching",
|
|
"--disable-frontend-multiprocessing"
|
|
]])
|
|
def server(default_server_args, request):
|
|
if request.param:
|
|
default_server_args.extend(request.param)
|
|
with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_single_completion(client: openai.AsyncOpenAI,
|
|
model_name: str) -> None:
|
|
completion = await client.completions.create(model=model_name,
|
|
prompt="Hello, my name is",
|
|
max_tokens=5,
|
|
temperature=0.0)
|
|
|
|
assert completion.id is not None
|
|
assert completion.choices is not None and len(completion.choices) == 1
|
|
|
|
choice = completion.choices[0]
|
|
assert len(choice.text) >= 5
|
|
assert choice.finish_reason == "length"
|
|
assert completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=5, prompt_tokens=6, total_tokens=11)
|
|
|
|
# test using token IDs
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
assert len(completion.choices[0].text) >= 1
|
|
assert completion.choices[0].prompt_logprobs is None
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_no_logprobs(client: openai.AsyncOpenAI, model_name: str):
|
|
# test using token IDs
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
logprobs=None,
|
|
)
|
|
choice = completion.choices[0]
|
|
assert choice.logprobs is None
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_zero_logprobs(client: openai.AsyncOpenAI, model_name: str):
|
|
# test using token IDs
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
logprobs=0,
|
|
)
|
|
choice = completion.choices[0]
|
|
assert choice.logprobs is not None
|
|
assert choice.logprobs.token_logprobs is not None
|
|
assert choice.logprobs.top_logprobs is not None
|
|
assert len(choice.logprobs.top_logprobs[0]) == 1
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_some_logprobs(client: openai.AsyncOpenAI, model_name: str):
|
|
# test using token IDs
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
logprobs=5,
|
|
)
|
|
choice = completion.choices[0]
|
|
assert choice.logprobs is not None
|
|
assert choice.logprobs.token_logprobs is not None
|
|
assert choice.logprobs.top_logprobs is not None
|
|
assert 5 <= len(choice.logprobs.top_logprobs[0]) <= 6
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_too_many_completion_logprobs(client: openai.AsyncOpenAI,
|
|
model_name: str) -> None:
|
|
|
|
with pytest.raises(
|
|
(openai.BadRequestError, openai.APIError)): # test using token IDs
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
# vLLM has higher default max_logprobs (20 instead of 5) to support
|
|
# both Completion API and Chat Completion API
|
|
logprobs=21,
|
|
)
|
|
...
|
|
with pytest.raises(
|
|
(openai.BadRequestError, openai.APIError)): # test using token IDs
|
|
stream = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
# vLLM has higher default max_logprobs (20 instead of 5) to support
|
|
# both Completion API and Chat Completion API
|
|
logprobs=30,
|
|
stream=True,
|
|
)
|
|
async for chunk in stream:
|
|
...
|
|
|
|
# the server should still work afterwards
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
assert len(completion.choices[0].text) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name, prompt_logprobs", [(MODEL_NAME, -1),
|
|
(MODEL_NAME, 0),
|
|
(MODEL_NAME, 1),
|
|
(MODEL_NAME, None)])
|
|
async def test_prompt_logprobs_completion(client: openai.AsyncOpenAI,
|
|
model_name: str,
|
|
prompt_logprobs: Optional[int]):
|
|
params: dict = {
|
|
"prompt": ["A robot may not injure another robot", "My name is"],
|
|
"model": model_name,
|
|
}
|
|
if prompt_logprobs is not None:
|
|
params["extra_body"] = {"prompt_logprobs": prompt_logprobs}
|
|
|
|
if prompt_logprobs is not None and prompt_logprobs < 0:
|
|
with pytest.raises(BadRequestError):
|
|
await client.completions.create(**params)
|
|
else:
|
|
completion = await client.completions.create(**params)
|
|
if prompt_logprobs is not None:
|
|
assert completion.choices[0].prompt_logprobs is not None
|
|
assert len(completion.choices[0].prompt_logprobs) > 0
|
|
|
|
assert completion.choices[1].prompt_logprobs is not None
|
|
assert len(completion.choices[1].prompt_logprobs) > 0
|
|
|
|
else:
|
|
assert completion.choices[0].prompt_logprobs is None
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_completion_streaming(client: openai.AsyncOpenAI,
|
|
model_name: str) -> None:
|
|
prompt = "What is an LLM?"
|
|
|
|
single_completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
single_output = single_completion.choices[0].text
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True)
|
|
chunks: list[str] = []
|
|
finish_reason_count = 0
|
|
async for chunk in stream:
|
|
chunks.append(chunk.choices[0].text)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason_count += 1
|
|
# finish reason should only return in last block
|
|
assert finish_reason_count == 1
|
|
assert chunk.choices[0].finish_reason == "length"
|
|
assert chunk.choices[0].text
|
|
assert "".join(chunks) == single_output
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_parallel_no_streaming(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
"""Parallel sampling without streaming.
|
|
A single request output contains a list of completions.
|
|
"""
|
|
|
|
prompt = "What is an LLM?"
|
|
n = 3
|
|
max_tokens = 50 # we want some to finish earlier than others
|
|
|
|
# High temperature to maximize chance of unique completions.
|
|
completion = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
temperature=1.0,
|
|
stream=False,
|
|
logprobs=0,
|
|
seed=42)
|
|
|
|
# Assert `n` completions
|
|
num_completions = len(completion.choices)
|
|
assert num_completions == n, (
|
|
f"Num completions {num_completions} but expected {n}.")
|
|
completion_repeats: dict[str, int] = {}
|
|
output_token_lengths = set()
|
|
for idx, choice in enumerate(completion.choices):
|
|
# Assert correct completion index & some finish reason.
|
|
assert choice.index == idx, (
|
|
f"Index {choice.index} but expected {idx}.")
|
|
assert choice.finish_reason is not None, (
|
|
"None finish_reason is invalid.")
|
|
text = choice.text
|
|
completion_repeats[text] = completion_repeats.get(text, 0) + 1
|
|
output_token_lengths.add(len(choice.logprobs.tokens))
|
|
# Assert subrequests finished at different times
|
|
assert len(output_token_lengths) > 1
|
|
# Assert `n` unique completions
|
|
num_unique = len(completion_repeats)
|
|
if num_unique != n:
|
|
repeats = {
|
|
txt: num
|
|
for (txt, num) in completion_repeats.items() if num > 1
|
|
}
|
|
raise AssertionError(
|
|
f"Expected {n} unique completions, got {num_unique};"
|
|
f" repeats: {repeats}.")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_parallel_streaming(client: openai.AsyncOpenAI, model_name: str):
|
|
"""Streaming for parallel sampling.
|
|
The tokens from multiple samples, are flattened into a single stream,
|
|
with an index to indicate which sample the token belongs to.
|
|
"""
|
|
|
|
prompt = "What is an LLM?"
|
|
n = 3
|
|
max_tokens = 50 # we want some to finish earlier than others
|
|
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
temperature=1.0,
|
|
stream=True,
|
|
seed=42)
|
|
chunks: list[list[str]] = [[] for _ in range(n)]
|
|
finish_reason_count = 0
|
|
async for chunk in stream:
|
|
index = chunk.choices[0].index
|
|
text = chunk.choices[0].text
|
|
chunks[index].append(text)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason_count += 1
|
|
# Assert `n` completions with correct finish reasons
|
|
assert finish_reason_count == n, (
|
|
f"Expected {n} completions with valid indices and finish_reason.")
|
|
completion_repeats: dict[str, int] = {}
|
|
chunk_lengths = set()
|
|
for chunk in chunks:
|
|
chunk_len = len(chunk)
|
|
# Assert correct number of completion tokens
|
|
chunk_lengths.add(chunk_len)
|
|
assert chunk_len <= max_tokens, (
|
|
f"max_tokens={max_tokens} but chunk len is {chunk_len}.")
|
|
text = "".join(chunk)
|
|
completion_repeats[text] = completion_repeats.get(text, 0) + 1
|
|
print(text)
|
|
# Assert subrequests finished at different times
|
|
assert len(chunk_lengths) > 1
|
|
# Assert `n` unique completions
|
|
num_unique = len(completion_repeats)
|
|
if num_unique != n:
|
|
repeats = {
|
|
txt: num
|
|
for (txt, num) in completion_repeats.items() if num > 1
|
|
}
|
|
raise AssertionError(f"{num_unique} unique completions, expected {n};"
|
|
f" repeats: {repeats}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_completion_stream_options(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
prompt = "What is the capital of France?"
|
|
|
|
# Test stream=True, stream_options=
|
|
# {"include_usage": False, "continuous_usage_stats": False}
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
stream_options={
|
|
"include_usage": False,
|
|
"continuous_usage_stats":
|
|
False,
|
|
})
|
|
|
|
async for chunk in stream:
|
|
assert chunk.usage is None
|
|
|
|
# Test stream=True, stream_options=
|
|
# {"include_usage": False, "continuous_usage_stats": True}
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
stream_options={
|
|
"include_usage": False,
|
|
"continuous_usage_stats":
|
|
True,
|
|
})
|
|
async for chunk in stream:
|
|
assert chunk.usage is None
|
|
|
|
# Test stream=True, stream_options=
|
|
# {"include_usage": True, "continuous_usage_stats": False}
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
stream_options={
|
|
"include_usage": True,
|
|
"continuous_usage_stats":
|
|
False,
|
|
})
|
|
async for chunk in stream:
|
|
if chunk.choices[0].finish_reason is None:
|
|
assert chunk.usage is None
|
|
else:
|
|
assert chunk.usage is None
|
|
final_chunk = await stream.__anext__()
|
|
assert final_chunk.usage is not None
|
|
assert final_chunk.usage.prompt_tokens > 0
|
|
assert final_chunk.usage.completion_tokens > 0
|
|
assert final_chunk.usage.total_tokens == (
|
|
final_chunk.usage.prompt_tokens +
|
|
final_chunk.usage.completion_tokens)
|
|
assert final_chunk.choices == []
|
|
|
|
# Test stream=True, stream_options=
|
|
# {"include_usage": True, "continuous_usage_stats": True}
|
|
stream = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
stream_options={
|
|
"include_usage": True,
|
|
"continuous_usage_stats":
|
|
True,
|
|
})
|
|
async for chunk in stream:
|
|
assert chunk.usage is not None
|
|
assert chunk.usage.prompt_tokens > 0
|
|
assert chunk.usage.completion_tokens > 0
|
|
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
|
|
chunk.usage.completion_tokens)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
final_chunk = await stream.__anext__()
|
|
assert final_chunk.usage is not None
|
|
assert final_chunk.usage.prompt_tokens > 0
|
|
assert final_chunk.usage.completion_tokens > 0
|
|
assert final_chunk.usage.total_tokens == (
|
|
final_chunk.usage.prompt_tokens +
|
|
final_chunk.usage.completion_tokens)
|
|
assert final_chunk.choices == []
|
|
|
|
# Test stream=False, stream_options=
|
|
# {"include_usage": None}
|
|
with pytest.raises(BadRequestError):
|
|
await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=False,
|
|
stream_options={"include_usage": None})
|
|
|
|
# Test stream=False, stream_options=
|
|
# {"include_usage": True}
|
|
with pytest.raises(BadRequestError):
|
|
await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=False,
|
|
stream_options={"include_usage": True})
|
|
|
|
# Test stream=False, stream_options=
|
|
# {"continuous_usage_stats": None}
|
|
with pytest.raises(BadRequestError):
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=False,
|
|
stream_options={"continuous_usage_stats": None})
|
|
|
|
# Test stream=False, stream_options=
|
|
# {"continuous_usage_stats": True}
|
|
with pytest.raises(BadRequestError):
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=False,
|
|
stream_options={"continuous_usage_stats": True})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_batch_completions(client: openai.AsyncOpenAI, model_name: str):
|
|
# test both text and token IDs
|
|
for prompts in (["Hello, my name is"] * 2, [[0, 0, 0, 0, 0]] * 2):
|
|
# test simple list
|
|
batch = await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompts,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
assert len(batch.choices) == 2
|
|
assert batch.choices[0].text == batch.choices[1].text
|
|
|
|
# test n = 2
|
|
batch = await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompts,
|
|
n=2,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
extra_body=dict(
|
|
# NOTE: this has to be true for n > 1 in vLLM, but
|
|
# not necessary for official client.
|
|
use_beam_search=True),
|
|
)
|
|
assert len(batch.choices) == 4
|
|
assert batch.choices[0].text != batch.choices[
|
|
1].text, "beam search should be different"
|
|
assert batch.choices[0].text == batch.choices[
|
|
2].text, "two copies of the same prompt should be the same"
|
|
assert batch.choices[1].text == batch.choices[
|
|
3].text, "two copies of the same prompt should be the same"
|
|
|
|
# test streaming
|
|
batch = await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompts,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
)
|
|
texts = [""] * 2
|
|
async for chunk in batch:
|
|
assert len(chunk.choices) == 1
|
|
choice = chunk.choices[0]
|
|
texts[choice.index] += choice.text
|
|
assert texts[0] == texts[1]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
@pytest.mark.parametrize("logprobs_arg", [1, 0])
|
|
async def test_echo_logprob_completion(client: openai.AsyncOpenAI,
|
|
model_name: str, logprobs_arg: int):
|
|
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
|
|
# test using text and token IDs
|
|
for prompt in ("Hello, my name is", [0, 0, 0, 0, 0]):
|
|
completion = await client.completions.create(model=model_name,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
echo=True,
|
|
logprobs=logprobs_arg)
|
|
|
|
prompt_text = tokenizer.decode(prompt) if isinstance(prompt,
|
|
list) else prompt
|
|
assert re.search(r"^" + prompt_text, completion.choices[0].text)
|
|
logprobs = completion.choices[0].logprobs
|
|
assert logprobs is not None
|
|
assert len(logprobs.text_offset) > 5
|
|
assert (len(logprobs.token_logprobs) > 5
|
|
and logprobs.token_logprobs[0] is None)
|
|
assert (len(logprobs.top_logprobs) > 5
|
|
and logprobs.top_logprobs[0] is None)
|
|
for top_logprobs in logprobs.top_logprobs[1:]:
|
|
assert max(logprobs_arg,
|
|
1) <= len(top_logprobs) <= logprobs_arg + 1
|
|
assert len(logprobs.tokens) > 5
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_invalid_json_schema(client: openai.AsyncOpenAI,
|
|
model_name: str) -> None:
|
|
invalid_json_schema = {
|
|
"$defs": {
|
|
"CarType": {
|
|
"enum": ["sedan", "SUV", "Truck", "Coupe"],
|
|
"title": "CarType",
|
|
"type": "string",
|
|
}
|
|
},
|
|
"properties": {
|
|
"brand": {
|
|
"title": "Brand",
|
|
"type": "string"
|
|
},
|
|
"model": {
|
|
"title": "Model",
|
|
"type": "string"
|
|
},
|
|
"car_type": {
|
|
"$ref": "#/$defs/CarType"
|
|
},
|
|
"foo": "bar",
|
|
},
|
|
"required": ["brand", "model", "car_type"],
|
|
"title": "CarDescription",
|
|
"type": "object",
|
|
}
|
|
prompt = ("Generate a JSON with the brand, model and car_type of"
|
|
"the most iconic car from the 90's")
|
|
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
extra_body={"guided_json": invalid_json_schema},
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_invalid_regex(client: openai.AsyncOpenAI, model_name: str):
|
|
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
|
|
"End in .com and new line. Example result:"
|
|
"alan.turing@enigma.com\n")
|
|
|
|
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
extra_body={
|
|
"guided_regex": r"[.*",
|
|
"stop": ["\n"]
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name",
|
|
[MODEL_NAME],
|
|
)
|
|
async def test_invalid_grammar(client: openai.AsyncOpenAI, model_name: str):
|
|
invalid_simplified_sql_grammar = """
|
|
root ::= select_statementinvalidsyntax
|
|
|
|
select_statement ::= "SELECT " column " from " table " where " condition
|
|
|
|
column ::= "col_1 " | "col_2 "
|
|
|
|
table ::= "table_1 " | "table_2 "
|
|
|
|
condition ::= column "= " number
|
|
|
|
number ::= "1 " | "2 "
|
|
"""
|
|
|
|
prompt = ("Generate an SQL query to show the 'username' and 'email'"
|
|
"from the 'users' table.")
|
|
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
extra_body={"guided_grammar": invalid_simplified_sql_grammar},
|
|
)
|