vllm/tests/v1/kv_connector/unit/utils.py

189 lines
6.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
from vllm import SamplingParams
from vllm.config import (CacheConfig, DeviceConfig, KVTransferConfig,
ModelConfig, SchedulerConfig, VllmConfig)
from vllm.v1.core.sched.scheduler import Scheduler
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheGroupSpec)
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.request import Request
from vllm.v1.structured_output import StructuredOutputManager
EOS_TOKEN_ID = 50256
def assert_scheduler_empty(scheduler: Scheduler):
"""Confirm the scheduler is "empty" - i.e. no leaks."""
# Scheduler Metadata.
assert len(scheduler.requests) == 0
assert len(scheduler.waiting) == 0
assert len(scheduler.running) == 0
assert len(scheduler.finished_req_ids) == 0
assert len(scheduler.finished_recving_kv_req_ids) == 0
assert len(scheduler._cached_reqs_data) == 0
# EncoderCacheManager.
assert len(scheduler.encoder_cache_manager.freed) == 0
assert len(scheduler.encoder_cache_manager.cached) == 0
# KVCache Manager.
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
req_to_blocks) == 0
assert len(scheduler.kv_cache_manager.req_to_block_hashes) == 0
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
num_cached_block) == 0
num_free_blocks = (
scheduler.kv_cache_manager.block_pool.free_block_queue.num_free_blocks)
assert num_free_blocks == (
scheduler.kv_cache_manager.block_pool.num_gpu_blocks - 1)
# NOTE(rob): just the ref count on blocks will be 0. The hash
# value, etc will remain since we lazily evict for prefix cache.
for block in scheduler.kv_cache_manager.block_pool.blocks:
assert block.ref_cnt == 0
def create_vllm_config(
model: str = "facebook/opt-125m",
max_num_seqs: int = 16,
max_num_batched_tokens: int = 64,
block_size: int = 16,
) -> VllmConfig:
"""Initialize VllmConfig For Testing."""
scheduler_config = SchedulerConfig(
max_num_seqs=max_num_seqs,
max_num_batched_tokens=max_num_batched_tokens,
max_model_len=max_num_batched_tokens,
)
model_config = ModelConfig(
model=model,
task="auto",
tokenizer=model,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="float16",
seed=42,
)
# Cache config, optionally force APC
cache_config = CacheConfig(
block_size=block_size,
gpu_memory_utilization=0.9,
swap_space=0,
cache_dtype="auto",
enable_prefix_caching=True,
)
kv_transfer_config = KVTransferConfig(
kv_connector="NixlConnector",
kv_role="kv_both",
)
return VllmConfig(scheduler_config=scheduler_config,
model_config=model_config,
cache_config=cache_config,
kv_transfer_config=kv_transfer_config,
device_config=DeviceConfig("cpu"))
def create_scheduler(
vllm_config: VllmConfig,
num_blocks: int = 10000,
) -> Scheduler:
"""Initialize Scheduler For Testing."""
block_size = vllm_config.cache_config.block_size
kv_cache_config = KVCacheConfig(
num_blocks=num_blocks, # A large number of blocks to hold all requests
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec(['layer'],
FullAttentionSpec(block_size, 1, 1, torch.float32,
False))
],
)
vllm_config.cache_config.num_gpu_blocks = num_blocks
return Scheduler(
vllm_config=vllm_config,
kv_cache_config=kv_cache_config,
log_stats=True,
structured_output_manager=StructuredOutputManager(vllm_config),
)
def create_request(
request_id: int,
num_tokens: int = 10,
max_tokens: int = 16,
do_remote_decode: bool = False,
do_remote_prefill: bool = False,
use_all_1s_for_prompt_tokens: bool = False,
num_remote_blocks: int = 3,
) -> Request:
"""Make dummy request for testing."""
kv_transfer_params: Optional[dict[str, Any]] = None
if do_remote_decode:
assert not do_remote_prefill
kv_transfer_params = dict(do_remote_prefill=False,
do_remote_decode=True)
elif do_remote_prefill:
kv_transfer_params = dict(do_remote_prefill=True,
do_remote_decode=False,
remote_engine_id="my-engine-id",
remote_block_ids=list(
range(num_remote_blocks)),
remote_host="my-host",
remote_port=1234)
max_tokens = 1 if do_remote_decode else max_tokens
sampling_params = SamplingParams(max_tokens=max_tokens)
if use_all_1s_for_prompt_tokens:
prompt_token_ids = [1] * num_tokens
else:
prompt_token_ids = [i * request_id for i in range(num_tokens)]
req = Request(
request_id=f"id-{request_id}",
prompt_token_ids=prompt_token_ids,
sampling_params=sampling_params,
multi_modal_inputs=None,
multi_modal_placeholders=None,
multi_modal_hashes=None,
eos_token_id=EOS_TOKEN_ID,
)
req.kv_transfer_params = kv_transfer_params
return req
def create_model_runner_output(
reqs: list[Request],
finished_sending: Optional[list[str]] = None,
finished_recving: Optional[list[str]] = None,
use_eos: bool = False,
) -> ModelRunnerOutput:
"""Make dummy model runner output for testing."""
# Make request data.
req_ids = [req.request_id for req in reqs]
req_id_to_index = {req_id: idx for idx, req_id in enumerate(req_ids)}
# Make sampled tokens.
sampled_token = EOS_TOKEN_ID if use_eos else 0
sampled_token_ids = [[sampled_token] for _ in req_ids]
# Make output data structure.
return ModelRunnerOutput(
req_ids=req_ids,
req_id_to_index=req_id_to_index,
sampled_token_ids=sampled_token_ids,
spec_token_ids=None,
logprobs=None,
prompt_logprobs_dict={},
finished_sending=finished_sending,
finished_recving=finished_recving,
)