mirror of https://github.com/vllm-project/vllm.git
51 lines
1.4 KiB
Python
51 lines
1.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from argparse import Namespace
|
|
|
|
from vllm import LLM, EngineArgs
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
|
|
def parse_args():
|
|
parser = FlexibleArgumentParser()
|
|
parser = EngineArgs.add_cli_args(parser)
|
|
# Set example specific arguments
|
|
parser.set_defaults(
|
|
model="jason9693/Qwen2.5-1.5B-apeach", task="classify", enforce_eager=True
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def main(args: Namespace):
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
|
|
# Create an LLM.
|
|
# You should pass task="classify" for classification models
|
|
model = LLM(**vars(args))
|
|
|
|
# Generate logits. The output is a list of ClassificationRequestOutputs.
|
|
outputs = model.classify(prompts)
|
|
|
|
# Print the outputs.
|
|
print("\nGenerated Outputs:\n" + "-" * 60)
|
|
for prompt, output in zip(prompts, outputs):
|
|
probs = output.outputs.probs
|
|
probs_trimmed = (str(probs[:16])[:-1] + ", ...]") if len(probs) > 16 else probs
|
|
print(
|
|
f"Prompt: {prompt!r} \n"
|
|
f"Class Probabilities: {probs_trimmed} (size={len(probs)})"
|
|
)
|
|
print("-" * 60)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|