mirror of https://github.com/vllm-project/vllm.git
145 lines
5.3 KiB
Python
145 lines
5.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.benchmarks.datasets import add_dataset_parser, get_samples
|
|
from vllm.v1.metrics.reader import Counter, Vector
|
|
|
|
try:
|
|
from vllm.utils import FlexibleArgumentParser
|
|
except ImportError:
|
|
from argparse import ArgumentParser as FlexibleArgumentParser
|
|
|
|
|
|
def parse_args():
|
|
parser = FlexibleArgumentParser()
|
|
add_dataset_parser(parser)
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="eagle",
|
|
choices=["ngram", "eagle", "eagle3", "mtp"],
|
|
)
|
|
parser.add_argument("--num-spec-tokens", type=int, default=2)
|
|
parser.add_argument("--prompt-lookup-max", type=int, default=5)
|
|
parser.add_argument("--prompt-lookup-min", type=int, default=2)
|
|
parser.add_argument("--tp", type=int, default=1)
|
|
parser.add_argument("--enforce-eager", action="store_true")
|
|
parser.add_argument("--enable-chunked-prefill", action="store_true")
|
|
parser.add_argument("--temp", type=float, default=0)
|
|
parser.add_argument("--top-p", type=float, default=1.0)
|
|
parser.add_argument("--top-k", type=int, default=-1)
|
|
parser.add_argument("--print-output", action="store_true")
|
|
parser.add_argument("--output-len", type=int, default=256)
|
|
parser.add_argument("--model-dir", type=str, default=None)
|
|
parser.add_argument("--eagle-dir", type=str, default=None)
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
args.endpoint_type = "openai-chat"
|
|
|
|
model_dir = args.model_dir
|
|
if args.model_dir is None:
|
|
model_dir = "meta-llama/Llama-3.1-8B-Instruct"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
|
|
|
prompts = get_samples(args, tokenizer)
|
|
# add_special_tokens is False to avoid adding bos twice when using chat templates
|
|
prompt_ids = [
|
|
tokenizer.encode(prompt.prompt, add_special_tokens=False) for prompt in prompts
|
|
]
|
|
|
|
if args.method == "eagle" or args.method == "eagle3":
|
|
eagle_dir = args.eagle_dir
|
|
if args.method == "eagle" and eagle_dir is None:
|
|
eagle_dir = "yuhuili/EAGLE-LLaMA3.1-Instruct-8B"
|
|
|
|
elif args.method == "eagle3" and eagle_dir is None:
|
|
eagle_dir = "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B"
|
|
speculative_config = {
|
|
"method": args.method,
|
|
"model": eagle_dir,
|
|
"num_speculative_tokens": args.num_spec_tokens,
|
|
}
|
|
elif args.method == "ngram":
|
|
speculative_config = {
|
|
"method": "ngram",
|
|
"num_speculative_tokens": args.num_spec_tokens,
|
|
"prompt_lookup_max": args.prompt_lookup_max,
|
|
"prompt_lookup_min": args.prompt_lookup_min,
|
|
}
|
|
else:
|
|
raise ValueError(f"unknown method: {args.method}")
|
|
|
|
llm = LLM(
|
|
model=model_dir,
|
|
trust_remote_code=True,
|
|
tensor_parallel_size=args.tp,
|
|
enable_chunked_prefill=args.enable_chunked_prefill,
|
|
enforce_eager=args.enforce_eager,
|
|
gpu_memory_utilization=0.8,
|
|
speculative_config=speculative_config,
|
|
disable_log_stats=False,
|
|
)
|
|
|
|
sampling_params = SamplingParams(temperature=args.temp, max_tokens=args.output_len)
|
|
outputs = llm.generate(prompt_token_ids=prompt_ids, sampling_params=sampling_params)
|
|
|
|
# print the generated text
|
|
if args.print_output:
|
|
for output in outputs:
|
|
print("-" * 50)
|
|
print(f"prompt: {output.prompt}")
|
|
print(f"generated text: {output.outputs[0].text}")
|
|
print("-" * 50)
|
|
|
|
try:
|
|
metrics = llm.get_metrics()
|
|
except AssertionError:
|
|
print("Metrics are not supported in the V0 engine.")
|
|
return
|
|
|
|
total_num_output_tokens = sum(
|
|
len(output.outputs[0].token_ids) for output in outputs
|
|
)
|
|
num_drafts = 0
|
|
num_draft_tokens = 0
|
|
num_accepted_tokens = 0
|
|
acceptance_counts = [0] * args.num_spec_tokens
|
|
for metric in metrics:
|
|
if metric.name == "vllm:spec_decode_num_drafts":
|
|
assert isinstance(metric, Counter)
|
|
num_drafts += metric.value
|
|
elif metric.name == "vllm:spec_decode_num_draft_tokens":
|
|
assert isinstance(metric, Counter)
|
|
num_draft_tokens += metric.value
|
|
elif metric.name == "vllm:spec_decode_num_accepted_tokens":
|
|
assert isinstance(metric, Counter)
|
|
num_accepted_tokens += metric.value
|
|
elif metric.name == "vllm:spec_decode_num_accepted_tokens_per_pos":
|
|
assert isinstance(metric, Vector)
|
|
for pos in range(len(metric.values)):
|
|
acceptance_counts[pos] += metric.values[pos]
|
|
|
|
print("-" * 50)
|
|
print(f"total_num_output_tokens: {total_num_output_tokens}")
|
|
print(f"num_drafts: {num_drafts}")
|
|
print(f"num_draft_tokens: {num_draft_tokens}")
|
|
print(f"num_accepted_tokens: {num_accepted_tokens}")
|
|
acceptance_length = 1 + (num_accepted_tokens / num_drafts) if num_drafts > 0 else 1
|
|
print(f"mean acceptance length: {acceptance_length:.2f}")
|
|
print("-" * 50)
|
|
|
|
# print acceptance at each token position
|
|
for i in range(len(acceptance_counts)):
|
|
acceptance_rate = acceptance_counts[i] / num_drafts if num_drafts > 0 else 0
|
|
print(f"acceptance at token {i}: {acceptance_rate:.2f}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|