vllm/tests/model_executor/test_model_load_with_params.py

122 lines
4.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import pytest
from vllm.model_executor.layers.pooler import CLSPool, MeanPool, PoolingType
from vllm.model_executor.models.bert import BertEmbeddingModel
from vllm.model_executor.models.roberta import RobertaEmbeddingModel
from vllm.platforms import current_platform
MAX_MODEL_LEN = 128
MODEL_NAME = os.environ.get("MODEL_NAME", "BAAI/bge-base-en-v1.5")
REVISION = os.environ.get("REVISION", "main")
MODEL_NAME_ROBERTA = os.environ.get("MODEL_NAME",
"intfloat/multilingual-e5-base")
REVISION_ROBERTA = os.environ.get("REVISION", "main")
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_model_loading_with_params(vllm_runner):
"""
Test parameter weight loading with tp>1.
"""
with vllm_runner(model_name=MODEL_NAME,
revision=REVISION,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.embed("Write a short story about a robot that"
" dreams for the first time.\n")
model_config = vllm_model.model.llm_engine.model_config
model_tokenizer = vllm_model.model.llm_engine.tokenizer
# asserts on the bert model config file
assert model_config.encoder_config["max_seq_length"] == 512
assert model_config.encoder_config["do_lower_case"]
# asserts on the pooling config files
assert model_config.pooler_config.pooling_type == PoolingType.CLS.name
assert model_config.pooler_config.normalize
# asserts on the tokenizer loaded
assert model_tokenizer.tokenizer_id == "BAAI/bge-base-en-v1.5"
assert model_tokenizer.tokenizer.model_max_length == 512
def check_model(model):
assert isinstance(model, BertEmbeddingModel)
assert isinstance(model._pooler, CLSPool)
vllm_model.apply_model(check_model)
# assert output
assert output
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_roberta_model_loading_with_params(vllm_runner):
"""
Test parameter weight loading with tp>1.
"""
with vllm_runner(model_name=MODEL_NAME_ROBERTA,
revision=REVISION_ROBERTA,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.embed("Write a short story about a robot that"
" dreams for the first time.\n")
model_config = vllm_model.model.llm_engine.model_config
model_tokenizer = vllm_model.model.llm_engine.tokenizer
# asserts on the bert model config file
assert model_config.encoder_config["max_seq_length"] == 512
assert not model_config.encoder_config["do_lower_case"]
# asserts on the pooling config files
assert model_config.pooler_config.pooling_type == PoolingType.MEAN.name
assert model_config.pooler_config.normalize
# asserts on the tokenizer loaded
assert model_tokenizer.tokenizer_id == "intfloat/multilingual-e5-base"
assert model_tokenizer.tokenizer.model_max_length == 512
def check_model(model):
assert isinstance(model, RobertaEmbeddingModel)
assert isinstance(model._pooler, MeanPool)
vllm_model.apply_model(check_model)
# assert output
assert output
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_facebook_roberta_model_loading_with_params(vllm_runner):
"""
Test loading roberta-base model with no lm_head.
"""
model_name = "FacebookAI/roberta-base"
with vllm_runner(model_name=model_name,
dtype="float16",
max_model_len=MAX_MODEL_LEN) as vllm_model:
output = vllm_model.embed("Write a short story about a robot that"
" dreams for the first time.\n")
model_tokenizer = vllm_model.model.llm_engine.tokenizer
assert model_tokenizer.tokenizer_id == model_name
def check_model(model):
assert isinstance(model, RobertaEmbeddingModel)
assert not hasattr(model, "lm_head")
assert isinstance(model._pooler, CLSPool)
vllm_model.apply_model(check_model)
assert output